Please use this identifier to cite or link to this item:
Title: Pricing Catastrophe Insurance Futures Call Spreads: A Randomized Operational Time Approach
Authors: Chang, C.W. 
Chang, J.S.K. 
Yu, M.-T.
Issue Date: 1996
Citation: Chang, C.W.,Chang, J.S.K.,Yu, M.-T. (1996). Pricing Catastrophe Insurance Futures Call Spreads: A Randomized Operational Time Approach. Journal of Risk and Insurance 63 (4) : 599-617. ScholarBank@NUS Repository.
Abstract: Actuaries value insurance claim accumulations using a compound Poisson process to capture the random, discrete, and clustered nature of claim arrival, but the standard Black (1976) formula for pricing futures options assumes that the underlying futures price follows a pure diffusion. Extant jump-diffusion option valuation models either assume diversifiable jump risk or resort to equilibrium arguments to account for jump risk premiums. We propose a novel randomized operational time approach to price options in information-time. The time change transforms a compound Poisson process to a more trackable pure diffusion and leads to a parsimonious option pricing formula as a risk-neutral Poisson sum of Black's prices in information-time with only two unobservable variables - the information arrival intensity and the information-time futures volatility.
Source Title: Journal of Risk and Insurance
ISSN: 00224367
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Sep 22, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.