Please use this identifier to cite or link to this item:
Title: A semantic similarity language model to improve automatic image annotation
Authors: Gong, T.
Li, S. 
Tan, C.L. 
Issue Date: 2010
Citation: Gong, T., Li, S., Tan, C.L. (2010). A semantic similarity language model to improve automatic image annotation. Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI 1 : 197-203. ScholarBank@NUS Repository.
Abstract: In recent years, with the rapid proliferation of digital images, the need to search and retrieve the images accurately, efficiently, and conveniently is becoming more acute. Automatic image annotation with image semantic content has attracted increasing attention, as it is the preprocess of annotation based image retrieval which provides users accurate, efficient, and convenient image retrieval with image understanding. Different machine learning approaches have been used to tackle the problem of automatic image annotation; however, most of them focused on exploring the relationship between images and annotation words and neglected the relationship among the annotation words. In this paper, we propose a framework of using language models to represent the word-to-word relation and thus to improve the performance of existing image annotation approaches utilizing probabilistic models. We also propose a specific language model - the semantic similarity language model to estimate the semantic similarity among the annotation words so that annotations that are more semantically coherent will have higher probability to be chosen to annotate the image. To illustrate the general idea of using language model to improve current image annotation systems, we added the language model on top of the two specific image annotation models - the translation model (TM) and the cross media relevance model (CMRM). We tested the improved models on a widely used image annotation corpus - the Corel 5K dataset. Our results show that by adding the semantic similarity language model, the performance of image annotation improves significantly in comparison with the original models. Our proposed language model can also be applied to other image annotation approaches using word probability conditioned on image or word-image joint probability as well. © 2010 IEEE.
Source Title: Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI
ISBN: 9780769542638
ISSN: 10823409
DOI: 10.1109/ICTAI.2010.35
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Aug 6, 2020

Page view(s)

checked on Aug 3, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.