Please use this identifier to cite or link to this item: https://doi.org/10.1109/ROBOT.2005.1570712
Title: Hybrid PRM sampling with a cost-sensitive adaptive strategy
Authors: Hsu, D. 
Sánchez-Ante, G.
Sun, Z.
Keywords: Motion planning
Probabilistic roadmap planners
Randomized algorithms
Robotics
Issue Date: 2005
Citation: Hsu, D.,Sánchez-Ante, G.,Sun, Z. (2005). Hybrid PRM sampling with a cost-sensitive adaptive strategy. Proceedings - IEEE International Conference on Robotics and Automation 2005 : 3874-3880. ScholarBank@NUS Repository. https://doi.org/10.1109/ROBOT.2005.1570712
Abstract: A number of advanced sampling strategies have been proposed in recent years to address the narrow passage problem for probabilistic roadmap (PRM) planning. These sampling strategies all have unique strengths, but none of them solves the problem completely. In this paper, we present a general and systematic approach for adaptively combining multiple sampling strategies so that their individual strengths are preserved. We have performed experiments with this approach on robots with up to 12 degrees of freedom in complex 3-D environments. Experiments show that although the performance of individual sampling strategies varies across different environments, the adaptive hybrid sampling strategies constructed with this approach perform consistently well in all environments. Further, we show that, under reasonable assumptions, the adaptive strategies are provably competitive against all individual strategies used. © 2005 IEEE.
Source Title: Proceedings - IEEE International Conference on Robotics and Automation
URI: http://scholarbank.nus.edu.sg/handle/10635/40972
ISBN: 078038914X
ISSN: 10504729
DOI: 10.1109/ROBOT.2005.1570712
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.