Please use this identifier to cite or link to this item:
Title: Identifying time-lagged gene clusters using gene expression data
Authors: Ji, L.
Tan, K.-L. 
Issue Date: 2005
Citation: Ji, L., Tan, K.-L. (2005). Identifying time-lagged gene clusters using gene expression data. Bioinformatics 21 (4) : 509-516. ScholarBank@NUS Repository.
Abstract: Motivation: Analysis of gene expression data can provide insights into the time-lagged co-regulation of genes/gene clusters. However, existing methods such as the Event Method and the Edge Detection Method are inefficient as they compare only two genes at a time. More importantly, they neglect some important information due to their scoring criterian. In this paper, we propose an efficient algorithm to identify time-lagged co-regulated gene clusters. The algorithm facilitates localized comparison and processes several genes simultaneously to generate detailed and complete time-lagged information for genes/gene clusters. Results: We experimented with the time-series Yeast gene dataset and compared our algorithm with the Event Method. Our results show that our algorithm is not only efficient, but also delivers more reliable and detailed information on time-lagged co-regulation between genes/gene clusters. © Oxford University Press 2004; all rights reserved.
Source Title: Bioinformatics
ISSN: 13674803
DOI: 10.1093/bioinformatics/bti026
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jul 6, 2020


checked on Jul 6, 2020

Page view(s)

checked on Jun 30, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.