Please use this identifier to cite or link to this item: https://doi.org/10.1006/jsco.2001.0462
DC FieldValue
dc.titleFast computation of the Bezout and Dixon resultant matrices
dc.contributor.authorChionh, E.-W.
dc.contributor.authorZhang, M.
dc.contributor.authorGoldman, R.N.
dc.date.accessioned2013-07-04T07:38:04Z
dc.date.available2013-07-04T07:38:04Z
dc.date.issued2002
dc.identifier.citationChionh, E.-W., Zhang, M., Goldman, R.N. (2002). Fast computation of the Bezout and Dixon resultant matrices. Journal of Symbolic Computation 33 (1) : 13-29. ScholarBank@NUS Repository. https://doi.org/10.1006/jsco.2001.0462
dc.identifier.issn07477171
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/39280
dc.description.abstractEfficient algorithms are derived for computing the entries of the Bezout resultant matrix for two univariate polynomials of degree n and for calculating the entries of the Dixon-Cayley resultant matrix for three bivariate polynomials of bidegree (m, n). Standard methods based on explicit formulas require O(n3) additions and multiplications to compute all the entries of the Bezout resultant matrix. Here we present a new recursive algorithm for computing these entries that uses only O(n2) additions and multiplications. The improvement is even more dramatic in the bivariate setting. Established techniques based on explicit formulas require O(m4n4) additions and multiplications to calculate all the entries of the Dixon-Cayley resultant matrix. In contrast, our recursive algorithm for computing these entries uses only O(m2n3) additions and multiplications. © 2002 Academic Press.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1006/jsco.2001.0462
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1006/jsco.2001.0462
dc.description.sourcetitleJournal of Symbolic Computation
dc.description.volume33
dc.description.issue1
dc.description.page13-29
dc.identifier.isiut000173471000002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.