Please use this identifier to cite or link to this item:
Title: Microcapsules with improved mechanical stability for hepatocyte culture
Authors: Yin, C.
Leong, K.W.
Mao, H.-Q. 
Yin, C.
Zhuo, R.-X.
Chia, S.M. 
Quek, C.H.
Yu, H. 
Keywords: Bioartificial liver
Liver assist device
Issue Date: 2003
Citation: Yin, C., Leong, K.W., Mao, H.-Q., Yin, C., Zhuo, R.-X., Chia, S.M., Quek, C.H., Yu, H. (2003). Microcapsules with improved mechanical stability for hepatocyte culture. Biomaterials 24 (10) : 1771-1780. ScholarBank@NUS Repository.
Abstract: Packed-bed or fluidized-bed bioreactor filled with microencapsulated hepatocytes has been proposed as one of the promising designs for bioartificial liver assist device (BLAD) because of potential advantages of high mass transport rate and optimal microenvironment for hepatocyte culture. Recently, we have developed a microcapsule system for the encapsulation of hepatocytes. The microcapsules consist of an inner core of modified collagen and an outer shell of terpolymer of methyl methacrylate, methacrylate and hydroxyethyl methacrylate. Cells encapsulated in these microcapsules exhibit enhanced cellular functions. Improving the mechanical stability of the microcapsules to withstand the shear stress induced by high perfusion rate would be crucial to the success of BLAD applications. In this study, we investigated the effects of terpolymer molecular weight (Mw) on the mechanical property of these microcapsules and the differentiated functions of encapsulated hepatocytes. Six terpolymers with different Mw were synthesized using radical polymerization in solution by adjusting the reaction temperature and the initiator concentration. All the terpolymers formed microcapsules with the methylated collagen. While the terpolymer Mw had little effect on the capsule membrane thickness and permeability of serum albumin, the mechanical property of the microcapsules was significantly improved by the higher Mw of the terpolymer. Differentiated functions of the hepatocytes cultured in the microcapsules, including urea synthesis, albumin synthesis and cytochrome P450 metabolic activity, were not significantly affected by the terpolymer Mw. © 2003 Elsevier Science Ltd. All rights reserved.
Source Title: Biomaterials
ISSN: 01429612
DOI: 10.1016/S0142-9612(02)00580-X
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 18, 2022


checked on Jan 18, 2022

Page view(s)

checked on Jan 13, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.