Please use this identifier to cite or link to this item: https://doi.org/10.2174/138620709788167944
DC FieldValue
dc.titleComparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries
dc.contributor.authorMa, X.H.
dc.contributor.authorJia, J.
dc.contributor.authorZhu, F.
dc.contributor.authorXue, Y.
dc.contributor.authorLi, Z.R.
dc.contributor.authorChen, Y.Z.
dc.date.accessioned2011-09-27T05:17:24Z
dc.date.available2011-09-27T05:17:24Z
dc.date.issued2009
dc.identifier.citationMa, X.H., Jia, J., Zhu, F., Xue, Y., Li, Z.R., Chen, Y.Z. (2009). Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Combinatorial Chemistry and High Throughput Screening 12 (4) : 344-357. ScholarBank@NUS Repository. https://doi.org/10.2174/138620709788167944
dc.identifier.issn13862073
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/26961
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.2174/138620709788167944
dc.sourceScopus
dc.subjectActivator
dc.subjectAdverse drug reaction
dc.subjectAgonist
dc.subjectAntagonist
dc.subjectCompound
dc.subjectComputer aided dug design
dc.subjectDrug
dc.subjectDrug discovery
dc.subjectInhibitor
dc.subjectMolecule
dc.subjectPharmacodynamics
dc.subjectPharmacokinetics
dc.subjectStatistical learning methods
dc.subjectToxicity
dc.subjectToxicology
dc.subjectVirtual screening
dc.typeReview
dc.contributor.departmentMEDICINE
dc.description.doi10.2174/138620709788167944
dc.description.sourcetitleCombinatorial Chemistry and High Throughput Screening
dc.description.volume12
dc.description.issue4
dc.description.page344-357
dc.identifier.isiut000266525900003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

45
checked on Nov 26, 2020

WEB OF SCIENCETM
Citations

45
checked on Nov 26, 2020

Page view(s)

236
checked on Nov 25, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.