Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/25567
Title: Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4nanoparticles: Synthesis, characterization and cellular uptake
Authors: Fan, Q.-L. 
Shuter, B. 
Wang, S.-C. 
Neoh, K.-G. 
Kang, E.-T. 
Keywords: ATRP
Magnetic nanoparticle
MRI
PEGMA
Solvent-free
Issue Date: 2007
Citation: Fan, Q.-L., Shuter, B., Wang, S.-C., Neoh, K.-G., Kang, E.-T. (2007). Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4nanoparticles: Synthesis, characterization and cellular uptake. Biomaterials 28 (36) : 5426-5436. ScholarBank@NUS Repository.
Abstract: Poly(poly(ethyleneglycol) monomethacrylate) (P(PEGMA))-grafted magnetic nanoparticles (MNPs) were successfully prepared via a solvent-free atom transfer radical polymerization (ATRP) method. The macroinitiators were immobilized on the surface of 6.4±0.8 nm Fe3O4 nanoparticles via effective ligand exchange of oleic acid with 3-chloropropionic acid (CPA), which rendered the nanoparticles soluble in the PEGMA monomer. The so-obtained P(PEGMA)-grafted MNPs have a uniform hydrodynamic particle size of 36.0±1.2 nm. The successful grafting of P(PEGMA) on the MNP surface was ascertained from FTIR and XPS analyses. The uptake of the MNPs by macrophage cells is reduced by two-orders of magnitude to <2 pg Fe/cell after surface grafting with P(PEGMA). Furthermore, the morphology and viability of the macrophage cells cultured in a medium containing 0.2 mg/mL of P(PEGMA)-grafted MNPs were found similar to those of cells cultured without nanoparticles, indicating an absence of significant cytotoxicity effects. T2-weighted magnetic resonance imaging (MRI) of P(PEGMA)-grafted MNPs showed that the magnetic resonance signal is enhanced significantly with increasing nanoparticle concentration in water. The R1 and R2 values per millimole Fe, and R2/R1 value of the P(PEGMA)-grafted MNPs were calculated to be 8.8 mm-1 s-1, 140 mm-1 s-1, and 16, respectively. These results indicate that the P(PEGMA)-grafted MNPs have great potential for application in MRI of specific biotargets. © 2007 Elsevier Ltd. All rights reserved.
Source Title: Biomaterials
URI: http://scholarbank.nus.edu.sg/handle/10635/25567
ISSN: 01429612
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.