Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.ceca.2006.08.002
DC FieldValue
dc.titleSignature combinatorial splicing profiles of rat cardiac- and smooth-muscle Cav1.2 channels with distinct biophysical properties
dc.contributor.authorTang, Z.Z.
dc.contributor.authorHong, X.
dc.contributor.authorSoong, T.W.
dc.contributor.authorWang, J.
dc.date.accessioned2011-07-27T06:38:11Z
dc.date.available2011-07-27T06:38:11Z
dc.date.issued2007
dc.identifier.citationTang, Z.Z., Hong, X., Soong, T.W., Wang, J. (2007). Signature combinatorial splicing profiles of rat cardiac- and smooth-muscle Cav1.2 channels with distinct biophysical properties. Cell Calcium 41 (5) : 417-428. ScholarBank@NUS Repository. https://doi.org/10.1016/j.ceca.2006.08.002
dc.identifier.issn01434160
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/24909
dc.description.abstractl-type (Cav1.2) voltage-gated calcium channels play an essential role in muscle contraction in the cardiovascular system. Alternative splicing of the pore-forming Cav1.2 subunit provides potent means to enrich the functional diversity of the channels. There are 11 alternatively spliced exons identified in rat Cav1.2 gene and random rearrangements may generate up to hundreds of combinatorial splicing profiles. Due to such complexity, the real combinatorial splicing profiles of Cav1.2 have not been solved. This study investigated whether the 11 alternatively spliced exons are spliced randomly or linked and if linked, how many combinatorial splicing profiles can be arranged in cardiac- and smooth-muscle cells. By examining three full-length cDNA libraries of the Cav1.2 transcripts isolated from rat heart and aorta, our results showed that the arrangements of some of the alternatively spliced exons are tissue-specific and tightly linked, giving rise to only 41 alternative combinatorial profiles, of which 29 have not been reported. Interestingly, the 41 combinatorial profiles were distinctively distributed in the three Cav1.2 libraries and the one named "heart 1-50" contained unexpected splice variants. Significantly, the tissue-specific cardiac- and smooth-muscle combinatorial splicing profiles of Cav1.2 channels demonstrated distinct electrophysiological properties that may help rationalize the differences observed in native currents. The unique sequences in these tissue-specific splice variants may provide the potential targets for drug design and screening. © 2006 Elsevier Ltd. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.ceca.2006.08.002
dc.sourceScopus
dc.subjectAlternative splicing
dc.subjectCav1.2
dc.subjectCalcium channel
dc.subjectl-type calcium channel
dc.subjectSplice variant
dc.typeArticle
dc.contributor.departmentPHYSIOLOGY
dc.description.doi10.1016/j.ceca.2006.08.002
dc.description.sourcetitleCell Calcium
dc.description.volume41
dc.description.issue5
dc.description.page417-428
dc.identifier.isiut000246324400002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

33
checked on Aug 16, 2019

WEB OF SCIENCETM
Citations

30
checked on Jul 8, 2019

Page view(s)

224
checked on Aug 19, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.