Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/245539
DC FieldValue
dc.titlePOSEACTION: ACTION RECOGNITION FOR PATIENTS IN THE WARD USING DEEP LEARNING APPROACHES
dc.contributor.authorLI ZHERUI
dc.date.accessioned2023-10-25T18:01:41Z
dc.date.available2023-10-25T18:01:41Z
dc.date.issued2023-07-06
dc.identifier.citationLI ZHERUI (2023-07-06). POSEACTION: ACTION RECOGNITION FOR PATIENTS IN THE WARD USING DEEP LEARNING APPROACHES. ScholarBank@NUS Repository.
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/245539
dc.language.isoen
dc.subjectAction recognition, Deep learning, PoseAction, Ward, Computer Vision, Patient
dc.typeThesis
dc.contributor.departmentBIOMEDICAL ENGINEERING
dc.contributor.supervisorChen Hua Yeow
dc.description.degreeMaster's
dc.description.degreeconferredMASTER OF ENGINEERING (CDE)
dc.identifier.orcid0000-0001-7992-9995
Appears in Collections:Master's Theses (Closed)

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.