Please use this identifier to cite or link to this item: https://doi.org/10.1172/JCI82306
Title: Temporal integration of light flashes by the human circadian system
Authors: Najjar, Raymond P 
Zeitzer, Jamie M
Keywords: Science & Technology
Life Sciences & Biomedicine
Medicine, Research & Experimental
Research & Experimental Medicine
RETINAL GANGLION-CELLS
PHASE RESPONSE CURVE
BRIGHT LIGHT
BODY-TEMPERATURE
CONTROLLED-TRIAL
DARK-ADAPTATION
ACTION SPECTRUM
MELANOPSIN
SLEEP
MELATONIN
Issue Date: 1-Mar-2016
Publisher: AMER SOC CLINICAL INVESTIGATION INC
Citation: Najjar, Raymond P, Zeitzer, Jamie M (2016-03-01). Temporal integration of light flashes by the human circadian system. JOURNAL OF CLINICAL INVESTIGATION 126 (3) : 938-947. ScholarBank@NUS Repository. https://doi.org/10.1172/JCI82306
Abstract: BACKGROUND. Beyond image formation, the light that is detected by retinal photoreceptors influences subcortical functions, incluDing circadian timing, sleep, and arousal. The physiology of nonimage-forming (NIF) photoresponses in humans is not well understood; therefore, the development of therapeutic interventions based on this physiology, such as bright light therapy to treat chronobiological disorders, remains challenging. METHODS. Thirty-nine participants were exposed to 60 minutes of either continuous light (n = 8) or sequences of 2-millisecond light flashes (n = 31) with different interstimulus intervals (ISIs; ranging from 2.5 to 240 seconds). Melatonin phase shift and suppression, along with changes in alertness and sleepiness, were assessed. RESULTS. We determined that the human circadian system integrates flash sequences in a nonlinear fashion with a linear rise to a peak response (ISI = 7.6 ± 0.53 seconds) and a power function decrease following the peak of responsivity. At peak ISI, flashes were at least 2-fold more effective in phase delaying the circadian system as compared with exposure to equiluminous continuous light 3,800 times the duration. Flashes did not change melatonin concentrations or alertness in an ISI-dependent manner. CONCLUSION. We have demonstrated that intermittent light is more effective than continuous light at eliciting circadian changes. These findings cast light on the phenomenology of photic integration and suggest a dichotomous retinohypothalamic network leaDing to circadian phase shifting and other NIF photoresponses. Further clinical trials are required to judge the practicality of light flash protocols. TRIAL REGISTRATION. Clinicaltrials.gov NCT01119365.
Source Title: JOURNAL OF CLINICAL INVESTIGATION
URI: https://scholarbank.nus.edu.sg/handle/10635/241157
ISSN: 0021-9738
1558-8238
DOI: 10.1172/JCI82306
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Temporal integration of light flashes by the human circadian system.pdf800 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.