Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-021-22463-y
DC FieldValue
dc.titleTissue-specific cell-free DNA degradation quantifies circulating tumor DNA burden
dc.contributor.authorZhu, Guanhua
dc.contributor.authorGuo, Yu A.
dc.contributor.authorHo, Danliang
dc.contributor.authorPoon, Polly
dc.contributor.authorPoh, Zhong Wee
dc.contributor.authorWong, Pui Mun
dc.contributor.authorGan, Anna
dc.contributor.authorChang, Mei Mei
dc.contributor.authorKleftogiannis, Dimitrios
dc.contributor.authorLau, Yi Ting
dc.contributor.authorTay, Brenda
dc.contributor.authorLim, Wan Jun
dc.contributor.authorChua, Clarinda
dc.contributor.authorTan, Tira J.
dc.contributor.authorKoo, Si-Lin
dc.contributor.authorChong, Dawn Q.
dc.contributor.authorYap, Yoon Sim
dc.contributor.authorTan, Iain
dc.contributor.authorNg, Sarah
dc.contributor.authorSkanderup, Anders J.
dc.date.accessioned2022-10-26T09:04:17Z
dc.date.available2022-10-26T09:04:17Z
dc.date.issued2021-04-13
dc.identifier.citationZhu, Guanhua, Guo, Yu A., Ho, Danliang, Poon, Polly, Poh, Zhong Wee, Wong, Pui Mun, Gan, Anna, Chang, Mei Mei, Kleftogiannis, Dimitrios, Lau, Yi Ting, Tay, Brenda, Lim, Wan Jun, Chua, Clarinda, Tan, Tira J., Koo, Si-Lin, Chong, Dawn Q., Yap, Yoon Sim, Tan, Iain, Ng, Sarah, Skanderup, Anders J. (2021-04-13). Tissue-specific cell-free DNA degradation quantifies circulating tumor DNA burden. Nature Communications 12 (1) : 2229. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-22463-y
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233587
dc.description.abstractProfiling of circulating tumor DNA (ctDNA) may offer a non-invasive approach to monitor disease progression. Here, we develop a quantitative method, exploiting local tissue-specific cell-free DNA (cfDNA) degradation patterns, that accurately estimates ctDNA burden independent of genomic aberrations. Nucleosome-dependent cfDNA degradation at promoters and first exon-intron junctions is strongly associated with differential transcriptional activity in tumors and blood. A quantitative model, based on just 6 regulatory regions, could accurately predict ctDNA levels in colorectal cancer patients. Strikingly, a model restricted to blood-specific regulatory regions could predict ctDNA levels across both colorectal and breast cancer patients. Using compact targeted sequencing (<25 kb) of predictive regions, we demonstrate how the approach could enable quantitative low-cost tracking of ctDNA dynamics and disease progression. © 2021, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentDEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1038/s41467-021-22463-y
dc.description.sourcetitleNature Communications
dc.description.volume12
dc.description.issue1
dc.description.page2229
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-021-22463-y.pdf3.57 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

21
checked on Jan 26, 2023

Page view(s)

17
checked on Jan 26, 2023

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons