Please use this identifier to cite or link to this item: https://doi.org/10.7554/elife.58779
DC FieldValue
dc.titleKv1.1 channels regulate early postnatal neurogenesis in mouse hippocampus via the TrkB signaling pathway
dc.contributor.authorChou, Shu-Min
dc.contributor.authorLi, Ke-Xin
dc.contributor.authorHuang, Ming-Yueh
dc.contributor.authorChen, Chao
dc.contributor.authorLin, Yuan-Hung King
dc.contributor.authorLi, Grant Guangnan
dc.contributor.authorZhou, Wei
dc.contributor.authorTeo, Chin Fen
dc.contributor.authorJan, Yuh Nung
dc.contributor.authorJan, Lily Yeh
dc.contributor.authorYang, Shi-Bing
dc.date.accessioned2022-10-26T08:33:30Z
dc.date.available2022-10-26T08:33:30Z
dc.date.issued2021-05-21
dc.identifier.citationChou, Shu-Min, Li, Ke-Xin, Huang, Ming-Yueh, Chen, Chao, Lin, Yuan-Hung King, Li, Grant Guangnan, Zhou, Wei, Teo, Chin Fen, Jan, Yuh Nung, Jan, Lily Yeh, Yang, Shi-Bing (2021-05-21). Kv1.1 channels regulate early postnatal neurogenesis in mouse hippocampus via the TrkB signaling pathway. eLife 10 : e58779. ScholarBank@NUS Repository. https://doi.org/10.7554/elife.58779
dc.identifier.issn2050-084X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233491
dc.description.abstractIn the postnatal brain, neurogenesis occurs only within a few regions, such as the hippocampal sub-granular zone (SGZ). Postnatal neurogenesis is tightly regulated by factors that balance stem cell renewal with differentiation, and it gives rise to neurons that participate in learning and memory formation. The Kv1.1 channel, a voltage-gated potassium channel, was previously shown to suppress postnatal neurogenesis in the SGZ in a cell-autonomous manner. In this study, we have clarified the physiological and molecular mechanisms underlying Kv1.1- dependent postnatal neurogenesis. First, we discovered that the membrane potential of neural progenitor cells is highly dynamic during development. We further established a multinomial logistic regression model for cell-type classification based on the biophysical characteristics and corresponding cell markers. We found that the loss of Kv1.1 channel activity causes significant depolarization of type 2b neural progenitor cells. This depolarization is associated with increased tropomyosin receptor kinase B (TrkB) signaling and proliferation of neural progenitor cells; suppressing TrkB signaling reduces the extent of postnatal neurogenesis. Thus, our study defines the role of the Kv1.1 potassium channel in regulating the proliferation of postnatal neural progenitor cells in mouse hippocampus. © Chou et al.
dc.publishereLife Sciences Publications Ltd
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.7554/elife.58779
dc.description.sourcetitleeLife
dc.description.volume10
dc.description.pagee58779
Appears in Collections:Students Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_7554_elife_58779.pdf5.36 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons