Please use this identifier to cite or link to this item:
Title: Kv1.1 channels regulate early postnatal neurogenesis in mouse hippocampus via the TrkB signaling pathway
Authors: Chou, Shu-Min
Li, Ke-Xin
Huang, Ming-Yueh
Chen, Chao
Lin, Yuan-Hung King
Li, Grant Guangnan
Zhou, Wei
Teo, Chin Fen
Jan, Yuh Nung
Jan, Lily Yeh
Yang, Shi-Bing
Issue Date: 21-May-2021
Publisher: eLife Sciences Publications Ltd
Citation: Chou, Shu-Min, Li, Ke-Xin, Huang, Ming-Yueh, Chen, Chao, Lin, Yuan-Hung King, Li, Grant Guangnan, Zhou, Wei, Teo, Chin Fen, Jan, Yuh Nung, Jan, Lily Yeh, Yang, Shi-Bing (2021-05-21). Kv1.1 channels regulate early postnatal neurogenesis in mouse hippocampus via the TrkB signaling pathway. eLife 10 : e58779. ScholarBank@NUS Repository.
Rights: Attribution 4.0 International
Abstract: In the postnatal brain, neurogenesis occurs only within a few regions, such as the hippocampal sub-granular zone (SGZ). Postnatal neurogenesis is tightly regulated by factors that balance stem cell renewal with differentiation, and it gives rise to neurons that participate in learning and memory formation. The Kv1.1 channel, a voltage-gated potassium channel, was previously shown to suppress postnatal neurogenesis in the SGZ in a cell-autonomous manner. In this study, we have clarified the physiological and molecular mechanisms underlying Kv1.1- dependent postnatal neurogenesis. First, we discovered that the membrane potential of neural progenitor cells is highly dynamic during development. We further established a multinomial logistic regression model for cell-type classification based on the biophysical characteristics and corresponding cell markers. We found that the loss of Kv1.1 channel activity causes significant depolarization of type 2b neural progenitor cells. This depolarization is associated with increased tropomyosin receptor kinase B (TrkB) signaling and proliferation of neural progenitor cells; suppressing TrkB signaling reduces the extent of postnatal neurogenesis. Thus, our study defines the role of the Kv1.1 potassium channel in regulating the proliferation of postnatal neural progenitor cells in mouse hippocampus. © Chou et al.
Source Title: eLife
ISSN: 2050-084X
DOI: 10.7554/elife.58779
Rights: Attribution 4.0 International
Appears in Collections:Students Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_7554_elife_58779.pdf5.36 MBAdobe PDF




checked on Oct 26, 2022

Page view(s)

checked on Nov 17, 2022

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons