Please use this identifier to cite or link to this item:
https://doi.org/10.1038/s41467-021-26085-2
DC Field | Value | |
---|---|---|
dc.title | DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data | |
dc.contributor.author | Ranjan, Bobby | |
dc.contributor.author | Sun, Wenjie | |
dc.contributor.author | Park, Jinyu | |
dc.contributor.author | Mishra, Kunal | |
dc.contributor.author | Schmidt, Florian | |
dc.contributor.author | Xie, Ronald | |
dc.contributor.author | Alipour, Fatemeh | |
dc.contributor.author | Singhal, Vipul | |
dc.contributor.author | Joanito, Ignasius | |
dc.contributor.author | Honardoost, Mohammad Amin | |
dc.contributor.author | Yong, Jacy Mei Yun | |
dc.contributor.author | Koh, Ee Tzun | |
dc.contributor.author | Leong, Khai Pang | |
dc.contributor.author | Rayan, Nirmala Arul | |
dc.contributor.author | Lim, Michelle Gek Liang | |
dc.contributor.author | Prabhakar, Shyam | |
dc.date.accessioned | 2022-10-26T08:33:04Z | |
dc.date.available | 2022-10-26T08:33:04Z | |
dc.date.issued | 2021-10-06 | |
dc.identifier.citation | Ranjan, Bobby, Sun, Wenjie, Park, Jinyu, Mishra, Kunal, Schmidt, Florian, Xie, Ronald, Alipour, Fatemeh, Singhal, Vipul, Joanito, Ignasius, Honardoost, Mohammad Amin, Yong, Jacy Mei Yun, Koh, Ee Tzun, Leong, Khai Pang, Rayan, Nirmala Arul, Lim, Michelle Gek Liang, Prabhakar, Shyam (2021-10-06). DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data. Nature Communications 12 (1) : 5849. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-26085-2 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/233484 | |
dc.description.abstract | Feature selection (marker gene selection) is widely believed to improve clustering accuracy, and is thus a key component of single cell clustering pipelines. Existing feature selection methods perform inconsistently across datasets, occasionally even resulting in poorer clustering accuracy than without feature selection. Moreover, existing methods ignore information contained in gene-gene correlations. Here, we introduce DUBStepR (Determining the Underlying Basis using Stepwise Regression), a feature selection algorithm that leverages gene-gene correlations with a novel measure of inhomogeneity in feature space, termed the Density Index (DI). Despite selecting a relatively small number of genes, DUBStepR substantially outperformed existing single-cell feature selection methods across diverse clustering benchmarks. Additionally, DUBStepR was the only method to robustly deconvolve T and NK heterogeneity by identifying disease-associated common and rare cell types and subtypes in PBMCs from rheumatoid arthritis patients. DUBStepR is scalable to over a million cells, and can be straightforwardly applied to other data types such as single-cell ATAC-seq. We propose DUBStepR as a general-purpose feature selection solution for accurately clustering single-cell data. © 2021, The Author(s). | |
dc.publisher | Nature Research | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | Scopus OA2021 | |
dc.type | Article | |
dc.contributor.department | GENOME INSTITUTE OF SINGAPORE | |
dc.description.doi | 10.1038/s41467-021-26085-2 | |
dc.description.sourcetitle | Nature Communications | |
dc.description.volume | 12 | |
dc.description.issue | 1 | |
dc.description.page | 5849 | |
Appears in Collections: | Students Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1038_s41467-021-26085-2.pdf | 3.19 MB | Adobe PDF | OPEN | None | View/Download |
SCOPUSTM
Citations
3
checked on Oct 26, 2022
Page view(s)
3
checked on Feb 2, 2023
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License