Please use this identifier to cite or link to this item: https://doi.org/10.1007/s40820-020-00587-y
DC FieldValue
dc.titleFrom Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage
dc.contributor.authorYang, Jinlin
dc.contributor.authorWang, Xiaowei
dc.contributor.authorDai, Wenrui
dc.contributor.authorLian, Xu
dc.contributor.authorCui, Xinhang
dc.contributor.authorZhang, Weichao
dc.contributor.authorZhang, Kexin
dc.contributor.authorLin, Ming
dc.contributor.authorZou, Ruqiang
dc.contributor.authorLoh, Kian Ping
dc.contributor.authorYang, Quan-Hong
dc.contributor.authorChen, Wei
dc.date.accessioned2022-10-12T07:57:35Z
dc.date.available2022-10-12T07:57:35Z
dc.date.issued2021-03-30
dc.identifier.citationYang, Jinlin, Wang, Xiaowei, Dai, Wenrui, Lian, Xu, Cui, Xinhang, Zhang, Weichao, Zhang, Kexin, Lin, Ming, Zou, Ruqiang, Loh, Kian Ping, Yang, Quan-Hong, Chen, Wei (2021-03-30). From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. Nano-Micro Letters 13 (1) : 98. ScholarBank@NUS Repository. https://doi.org/10.1007/s40820-020-00587-y
dc.identifier.issn2311-6706
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/232339
dc.description.abstractHighlights: Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores.The thick electrode (~ 19 mg cm?2) with a high areal capacity of 6.14 mAh cm?2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Abstract: Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g?1 at 30 mA g?1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm?2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm?2 at 25 °C and 5.32 mAh cm?2 at ? 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.[Figure not available: see fulltext.]. © 2021, The Author(s).
dc.publisherSpringer Science and Business Media B.V.
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.subjectCarbon anode
dc.subjectExtra sodium-ion storage sites
dc.subjectHigh areal capacity
dc.subjectLow-voltage capacity
dc.subjectUltra-micropores
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentOFFICE OF THE SR DY PRESIDENT & PROVOST
dc.description.doi10.1007/s40820-020-00587-y
dc.description.sourcetitleNano-Micro Letters
dc.description.volume13
dc.description.issue1
dc.description.page98
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1007_s40820-020-00587-y.pdf5.29 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons