Please use this identifier to cite or link to this item:
Title: L2MXception: an improved Xception network for classification of peach diseases
Authors: Yao, Na
Ni, Fuchuan
Wang, Ziyan
Luo, Jun
Sung, Wing-Kin 
Luo, Chaoxi
Li, Guoliang
Keywords: Deep learning
Peach diseases
Issue Date: 1-Apr-2021
Publisher: BioMed Central Ltd
Citation: Yao, Na, Ni, Fuchuan, Wang, Ziyan, Luo, Jun, Sung, Wing-Kin, Luo, Chaoxi, Li, Guoliang (2021-04-01). L2MXception: an improved Xception network for classification of peach diseases. Plant Methods 17 (1) : 36. ScholarBank@NUS Repository.
Rights: Attribution 4.0 International
Abstract: Background: Peach diseases can cause severe yield reduction and decreased quality for peach production. Rapid and accurate detection and identification of peach diseases is of great importance. Deep learning has been applied to detect peach diseases using imaging data. However, peach disease image data is difficult to collect and samples are imbalance. The popular deep networks perform poor for this issue. Results: This paper proposed an improved Xception network named as L2MXception which ensembles regularization term of L2-norm and mean. With the peach disease image dataset collected, results on seven mainstream deep learning models were compared in details and an improved loss function was integrated with regularization term L2-norm and mean (L2M Loss). Experiments showed that the Xception model with L2M Loss outperformed the current best method for peach disease prediction. Compared to the original Xception model, the validation accuracy of L2MXception was up to 93.85%, increased by 28.48%. Conclusions: The proposed L2MXception network may have great potential in early identification of peach diseases. © 2021, The Author(s).
Source Title: Plant Methods
ISSN: 1746-4811
DOI: 10.1186/s13007-021-00736-3
Rights: Attribution 4.0 International
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1186_s13007-021-00736-3.pdf10.06 MBAdobe PDF




checked on Nov 29, 2022

Page view(s)

checked on Dec 1, 2022

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons