Please use this identifier to cite or link to this item: https://doi.org/10.1021/acs.nanolett.1c03435
DC FieldValue
dc.titleOrganic-2D Material Heterostructures: A Promising Platform for Exciton Condensation and Multiplication
dc.contributor.authorUlman, Kanchan
dc.contributor.authorQuek, Su Ying
dc.date.accessioned2022-08-05T07:35:47Z
dc.date.available2022-08-05T07:35:47Z
dc.date.issued2021-10-18
dc.identifier.citationUlman, Kanchan, Quek, Su Ying (2021-10-18). Organic-2D Material Heterostructures: A Promising Platform for Exciton Condensation and Multiplication. NANO LETTERS 21 (20) : 8888-8894. ScholarBank@NUS Repository. https://doi.org/10.1021/acs.nanolett.1c03435
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/229976
dc.description.abstractWe predict that high temperature Bose-Einstein condensation of charge transfer excitons can be achieved in organic-two-dimensional (2D) material heterostructures, at ∼50-100 K. Unlike 2D bilayers that can be angle-misaligned, organic-2D systems generally have momentum-direct low-energy excitons, thus favoring condensation. Our predictions are obtained for ZnPc-MoS2 using state-of-the-art first-principles calculations with the GW-BSE approach. The exciton energies we predict are in excellent agreement with recent experiments. The lowest energy charge transfer excitons in ZnPc-MoS2 are strongly bound with a spatial extent of ∼1-2 nm and long lifetimes (τ0 ∼1 ns), making them ideal for exciton condensation. We also predict the emergence of inter-ZnPc excitons that are stabilized by the interaction of the molecules with the 2D substrate. This novel way of stabilizing intermolecular excitons by indirect substrate mediation suggests design strategies for singlet fission and exciton multiplication, which are important to overcome the Shockley-Queisser efficiency limit in solar cells.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectorganic-2D heterostructures
dc.subjectcharge transfer excitons
dc.subjectBose-Einstein condensation
dc.subjectsinglet fission
dc.subjectfirst-principles calculations
dc.typeArticle
dc.date.updated2022-08-02T03:47:30Z
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentPHYSICS
dc.description.doi10.1021/acs.nanolett.1c03435
dc.description.sourcetitleNANO LETTERS
dc.description.volume21
dc.description.issue20
dc.description.page8888-8894
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
SI_Charge_transfer_excitons_in_ZnPc_MoS2_heterojunctions_resubmit_nohighlight.pdfSupporting information3.36 MBAdobe PDF

OPEN

Post-print Available on 18-10-2022
Charge_transfer_excitons_in_ZnPc_MoS2_heterojunctions_resubmit_nohighlight.pdfAccepted version9.48 MBAdobe PDF

OPEN

Post-print Available on 18-10-2022

SCOPUSTM   
Citations

5
checked on Aug 13, 2022

Page view(s)

17
checked on Aug 11, 2022

Download(s)

2
checked on Aug 11, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.