Please use this identifier to cite or link to this item:
Title: When to reply? Context Sensitive Models to Predict Instructor Interventions in MOOC Forums
Authors: Chandrasekaran, Muthu Kumar
Kan, Min-Yen 
Keywords: cs.CL
Issue Date: 27-May-2019
Citation: Chandrasekaran, Muthu Kumar, Kan, Min-Yen (2019-05-27). When to reply? Context Sensitive Models to Predict Instructor Interventions in MOOC Forums. ScholarBank@NUS Repository.
Abstract: Due to time constraints, course instructors often need to selectively participate in student discussion threads, due to their limited bandwidth and lopsided student--instructor ratio on online forums. We propose the first deep learning models for this binary prediction problem. We propose novel attention based models to infer the amount of latent context necessary to predict instructor intervention. Such models also allow themselves to be tuned to instructor's preference to intervene early or late. Our three proposed attentive model variants to infer the latent context improve over the state-of-the-art by a significant, large margin of 11% in F1 and 10% in recall, on average. Further, introspection of attention help us better understand what aspects of a discussion post propagate through the discussion thread that prompts instructor intervention.
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
1905.10851v1.pdf805.3 kBAdobe PDF



Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.