Please use this identifier to cite or link to this item: https://doi.org/10.1021/acs.nanolett.0c03875
DC FieldValue
dc.titleFerroelastic Nanodomain-mediated Mechanical Switching of Ferroelectricity in Thick Epitaxial Films
dc.contributor.authorLi, Qian
dc.contributor.authorWang, Bo
dc.contributor.authorHe, Qian
dc.contributor.authorYu, Pu
dc.contributor.authorChen, Long-Qing
dc.contributor.authorKalinin, Sergei
dc.contributor.authorLi, Jing-Feng
dc.date.accessioned2022-02-28T07:01:05Z
dc.date.available2022-02-28T07:01:05Z
dc.date.issued2021-01-13
dc.identifier.citationLi, Qian, Wang, Bo, He, Qian, Yu, Pu, Chen, Long-Qing, Kalinin, Sergei, Li, Jing-Feng (2021-01-13). Ferroelastic Nanodomain-mediated Mechanical Switching of Ferroelectricity in Thick Epitaxial Films. NANO LETTERS 21 (1) : 445-452. ScholarBank@NUS Repository. https://doi.org/10.1021/acs.nanolett.0c03875
dc.identifier.issn15306984
dc.identifier.issn15306992
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/216438
dc.description.abstractMechanical switching of ferroelectric polarization, typically realized via a scanning probe, holds promise in (multi)ferroic device applications. Whereas strain gradient-associated flexoelectricity has been regarded to be accountable for mechanical switching in ultrathin (<10 nm) films, such mechanism can hardly be extended to thicker materials due to intrinsic short operating lengths of flexoelectricity. Here, we demonstrate robust mechanical switching in a100 nm thick Pb(Zr0.2Ti0.8)O3 epitaxial films with a characteristic microstructure consisting of nanosized ferroelastic domains. Through a combination of multiscale structural characterizations, piezoresponse force microscopy, and phase-field simulations, we reveal that the ferroelastic nanodomains effectively mediate the 180° switching nucleation in a dynamical manner during tip scanning. Coupled with microstructure engineering, this newly revealed mechanism could boost the utility of mechanical switching through extended material systems. Our results also provide insight into competing polarization switching pathways in complex ferroelectric materials, essential for understanding their electromechanical response.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Multidisciplinary
dc.subjectChemistry, Physical
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectferroelectric thin films
dc.subjectpolarization switching
dc.subjectmechanical switching
dc.subjectpiezoreponse force microscopy
dc.subjectphase-field simulation
dc.subjectDOMAINS
dc.typeArticle
dc.date.updated2022-02-28T02:39:10Z
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1021/acs.nanolett.0c03875
dc.description.sourcetitleNANO LETTERS
dc.description.volume21
dc.description.issue1
dc.description.page445-452
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
PZT_ms_QH.docxSubmitted version91.93 kBMicrosoft Word XML

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.