Please use this identifier to cite or link to this item: https://doi.org/10.1080/10618600.2021.1880921
Title: Assessment and adjustment of approximate inference algorithms using the law of total variance
Authors: Xuejun Yu
David Nott 
Minh-Ngoc Tran
Nadja Klein
Issue Date: 18-Mar-2021
Publisher: Taylor & Francis
Citation: Xuejun Yu, David Nott, Minh-Ngoc Tran, Nadja Klein (2021-03-18). Assessment and adjustment of approximate inference algorithms using the law of total variance. Journal of Computational and Graphical Statistics 30 (4) : 977-990. ScholarBank@NUS Repository. https://doi.org/10.1080/10618600.2021.1880921
Source Title: Journal of Computational and Graphical Statistics
URI: https://scholarbank.nus.edu.sg/handle/10635/214927
ISSN: 1061-8600
DOI: 10.1080/10618600.2021.1880921
Appears in Collections:Elements
Students Publications
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10.108010618600.2021.1880921.zip4.55 MBZIP

OPEN

NoneView/Download

Page view(s)

65
checked on Sep 29, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.