Please use this identifier to cite or link to this item: https://doi.org/10.7150/thno.29755
DC FieldValue
dc.titleMicrohexagon gradient array directs spatial diversification of spinal motor neurons
dc.contributor.authorLim, G.S.
dc.contributor.authorHor, J.H.
dc.contributor.authorHo, N.R.Y.
dc.contributor.authorWong, C.Y.
dc.contributor.authorNg, S.Y.
dc.contributor.authorSoh, B.S.
dc.contributor.authorShao, H.
dc.date.accessioned2021-12-16T07:51:52Z
dc.date.available2021-12-16T07:51:52Z
dc.date.issued2019
dc.identifier.citationLim, G.S., Hor, J.H., Ho, N.R.Y., Wong, C.Y., Ng, S.Y., Soh, B.S., Shao, H. (2019). Microhexagon gradient array directs spatial diversification of spinal motor neurons. Theranostics 9 (2) : 311-323. ScholarBank@NUS Repository. https://doi.org/10.7150/thno.29755
dc.identifier.issn18387640
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/210814
dc.description.abstractMotor neuron diversification and regionalization are important hallmarks of spinal cord development and rely on fine spatiotemporal release of molecular cues. Here, we present a dedicated platform to engineer complex molecular profiles for directed neuronal differentiation. Methods: The technology, termed microhexagon interlace for generation of versatile and fine gradients (microHIVE), leverages on an interlocking honeycomb lattice of microstructures to dynamically pattern molecular profiles at a high spatial resolution. By packing the microhexagons as a divergent, mirrored array, the platform not only enables maximal mixing efficiency but also maintains a small device footprint. Results: Employing the microHIVE platform, we developed optimized profiles of growth factors to induce rostral-caudal patterning of spinal motor neurons, and directed stem cell differentiation in situ into a spatial continuum of different motor neuron subtypes. Conclusions: The differentiated cells showed progressive RNA and protein signatures, consistent with that of representative brachial, thoracic and lumbar regions of the human spinal cord. The microHIVE platform can thus be utilized to develop advanced biomimetic systems for the study of diseases in vitro. © Ivyspring International Publisher.
dc.publisherIvyspring International Publisher
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceScopus OA2019
dc.subjectMicrofluidics
dc.subjectMolecular gradient
dc.subjectMotor neuron
dc.subjectSpinal cord
dc.subjectStem cell
dc.typeArticle
dc.contributor.departmentDEPT OF PHYSIOLOGY
dc.contributor.departmentDEPT OF BIOLOGICAL SCIENCES
dc.contributor.departmentDEPT OF BIOMEDICAL ENGINEERING
dc.description.doi10.7150/thno.29755
dc.description.sourcetitleTheranostics
dc.description.volume9
dc.description.issue2
dc.description.page311-323
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_7150_thno_29755.pdf1.89 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

9
checked on Oct 1, 2022

Page view(s)

59
checked on Sep 29, 2022

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons