Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.ppat.1007956
Title: Analysis of a fully infectious bio-orthogonally modified human virus reveals novel features of virus cell entry
Authors: Serwa, R.A.
Sekine, E.
Brown, J.
Teo, S.H.C. 
Tate, E.W.
O’Hare, P.
Issue Date: 2019
Publisher: Public Library of Science
Citation: Serwa, R.A., Sekine, E., Brown, J., Teo, S.H.C., Tate, E.W., O’Hare, P. (2019). Analysis of a fully infectious bio-orthogonally modified human virus reveals novel features of virus cell entry. PLoS Pathogens 15 (10) : e1007956. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.ppat.1007956
Rights: Attribution 4.0 International
Abstract: We report the analysis of a complex enveloped human virus, herpes simplex virus (HSV), assembled after in vivo incorporation of bio-orthogonal methionine analogues homopropargylglycine (HPG) or azidohomoalanine (AHA). We optimised protocols for the production of virions incorporating AHA (termed HSVAHA), identifying conditions which resulted in normal yields of HSV and normal particle/pfu ratios. Moreover we show that essentially every single HSVAHA capsid-containing particle was detectable at the individual particle level by chemical ligation of azide-linked fluorochromes to AHA-containing structural proteins. This was a completely specific chemical ligation, with no capsids assembled under normal methionine-containing conditions detected in parallel. We demonstrate by quantitative mass spectrometric analysis that HSVAHA virions exhibit no qualitative or quantitative differences in the repertoires of structural proteins compared to virions assembled under normal conditions. Individual proteins and AHA incorporation sites were identified in capsid, tegument and envelope compartments, including major essential structural proteins. Finally we reveal novel aspects of entry pathways using HSVAHA and chemical fluorochrome ligation that were not apparent from conventional immunofluorescence. Since ligation targets total AHA-containing protein and peptides, our results demonstrate the presence of abundant AHA-labelled products in cytoplasmic macrodomains and tubules which no longer contain intact particles detectable by immunofluorescence. Although these do not co-localise with lysosomal markers, we propose they may represent sites of proteolytic virion processing. Analysis of HSVAHA also enabled the discrimination from primary entering from secondary assembling virions, demonstrating assembly and second round infection within 6 hrs of initial infection and dual infections of primary and secondary virus in spatially restricted cytoplasmic areas of the same cell. Together with other demonstrated applications e.g., in genome biology, lipid and protein trafficking, this work further exemplifies the utility and potential of bio-orthogonal chemistry for studies in many aspects of virus-host interactions. © 2019 Serwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Source Title: PLoS Pathogens
URI: https://scholarbank.nus.edu.sg/handle/10635/209631
ISSN: 1553-7366
DOI: 10.1371/journal.ppat.1007956
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_ppat_1007956.pdf2.95 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

3
checked on Jan 25, 2023

Page view(s)

85
checked on Jan 26, 2023

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons