Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/204903
DC FieldValue
dc.titleALGEBRAIC DYNAMICS ON COMPACT NORMAL VARIETIES
dc.contributor.authorZHONG GUOLEI
dc.date.accessioned2021-10-31T18:00:56Z
dc.date.available2021-10-31T18:00:56Z
dc.date.issued2021-08-12
dc.identifier.citationZHONG GUOLEI (2021-08-12). ALGEBRAIC DYNAMICS ON COMPACT NORMAL VARIETIES. ScholarBank@NUS Repository.
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/204903
dc.description.abstractIn this thesis, we first generalize the equivariant minimal model program (EMMP) from the algebraic situation to the transcendental case and give a few dynamical characterizations of Q-complex tori. Second, as an application of the EMMP, we show that a rationally connected smooth projective variety X admitting an int-amplified endomorphism f is toric if one of the following holds: (1) f has totally invariant ramifications; (2) X is a Fano threefold; or (3) X is a Fano fourfold admitting a conic bundle structure. Finally, we study the (totally) invariant subvarieties and give optimal upper bounds under some further dynamical restrictions. The second part and the third part are based on some joint works with Jia, Matsuzawa, Meng, Shibata and Zhang.
dc.language.isoen
dc.subjectConic bundle, Dynamical degree, Fano manifold, Int-amplified endomorphism, Toric variety, (Totally) invariant subvariety
dc.typeThesis
dc.contributor.departmentMATHEMATICS
dc.contributor.supervisorZhang DeQi
dc.description.degreePh.D
dc.description.degreeconferredDOCTOR OF PHILOSOPHY (FOS)
dc.identifier.orcid0000-0001-7792-9529
Appears in Collections:Ph.D Theses (Open)

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Zhong_Thesis_Final.pdf1.37 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.