Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jeconom.2009.09.020
DC FieldValue
dc.titleAn integrated maximum score estimator for a generalized censored quantile regression model
dc.contributor.authorChen, S.
dc.date.accessioned2011-02-24T06:55:17Z
dc.date.available2011-02-24T06:55:17Z
dc.date.issued2010
dc.identifier.citationChen, S. (2010). An integrated maximum score estimator for a generalized censored quantile regression model. Journal of Econometrics 155 (1) : 90-98. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jeconom.2009.09.020
dc.identifier.issn03044076
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/19987
dc.description.abstractQuantile regression techniques have been widely used in empirical economics. In this paper, we consider the estimation of a generalized quantile regression model when data are subject to fixed or random censoring. Through a discretization technique, we transform the censored regression model into a sequence of binary choice models and further propose an integrated smoothed maximum score estimator by combining individual binary choice models, following the insights of Horowitz (1992) and Manski (1985). Unlike the estimators of Horowitz (1992) and Manski (1985), our estimators converge at the usual parametric rate through an integration process. In the case of fixed censoring, our approach overcomes a major drawback of existing approaches associated with the curse-of-dimensionality problem. Our approach for the fixed censored case can be extended readily to the case with random censoring for which other existing approaches are no longer applicable. Both of our estimators are consistent and asymptotically normal. A simulation study demonstrates that our estimators perform well in finite samples.©2009 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jeconom.2009.09.020
dc.sourceScopus
dc.subjectDimension reduction
dc.subjectQuantile regression
dc.subjectTransformation models
dc.typeArticle
dc.contributor.departmentECONOMICS
dc.description.doi10.1016/j.jeconom.2009.09.020
dc.description.sourcetitleJournal of Econometrics
dc.description.volume155
dc.description.issue1
dc.description.page90-98
dc.description.codenJECMB
dc.identifier.isiut000275393500007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

9
checked on Jun 14, 2019

WEB OF SCIENCETM
Citations

8
checked on Jun 7, 2019

Page view(s)

195
checked on May 24, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.