Please use this identifier to cite or link to this item:
Title: Photoinduced metastable dd-exciton-driven metal-insulator transitions in quasi-one-dimensional transition metal oxides
Authors: Asmara, T.C.
Lichtenberg, F.
Biebl, F.
Zhu, T. 
Das, P.K. 
Naradipa, M.A.
Fauzi, A.D.
Diao, C. 
Yang, P. 
Lenzen, P.
Buchenau, S.
Grimm-Lebsanft, B.
Wan, D. 
Trevisanutto, P.E. 
Breese, Mark B. H.
Venkatesan, T. 
Rübhausen, M.
Rusydi, A. 
Issue Date: 2020
Publisher: Nature Research
Citation: Asmara, T.C., Lichtenberg, F., Biebl, F., Zhu, T., Das, P.K., Naradipa, M.A., Fauzi, A.D., Diao, C., Yang, P., Lenzen, P., Buchenau, S., Grimm-Lebsanft, B., Wan, D., Trevisanutto, P.E., Breese, Mark B. H., Venkatesan, T., Rübhausen, M., Rusydi, A. (2020). Photoinduced metastable dd-exciton-driven metal-insulator transitions in quasi-one-dimensional transition metal oxides. Communications Physics 3 (1) : 206. ScholarBank@NUS Repository.
Rights: Attribution 4.0 International
Abstract: Photoinduced phase transitions in matters have gained tremendous attention over the past few years. However, their ultrashort lifetime makes their study and possible control very challenging. Here, we report on highly anisotropic d-d excitonic excitations yielding photoinduced metal-insulator transitions (MITs) in quasi-one-dimensional metals Sr1-yNbOx using Mueller-Matrix spectroscopic ellipsometry, transient ultraviolet Raman spectroscopy, transient mid-infrared reflectivity and angular-resolved photoemission spectroscopy supported with density functional theory. Interestingly, the MITs are driven by photo-pumping of d-d excitons, causing the metallic a-axis to become insulating while the insulating b- and c-axis concomitantly become a correlated metal. We assign these effects to an interplay between the melting of charge and lattice orderings along the different anisotropic optical axes and Bose-Einstein-like condensation of the photoinduced excitons. The long lifetime in the order of several seconds of the metastable MITs gives greater flexibility to study and manipulate the transient excitonic state for potential applications in exciton-based optoelectronic devices. © 2020, The Author(s).
Source Title: Communications Physics
ISSN: 2399-3650
DOI: 10.1038/s42005-020-00451-w
Rights: Attribution 4.0 International
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s42005_020_00451_w.pdf1.9 MBAdobe PDF



Page view(s)

checked on Jan 27, 2022

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons