Please use this identifier to cite or link to this item: https://doi.org/10.1002/advs.201903391
Title: A Lesson from Plants: High-Speed Soft Robotic Actuators
Authors: Baumgartner, R.
Kogler, A.
Stadlbauer, J.M.
Foo, C.C.
Kaltseis, R.
Baumgartner, M.
Mao, G.
Keplinger, C.
Koh, S.J.A. 
Arnold, N.
Suo, Z.
Kaltenbrunner, M.
Bauer, S.
Keywords: bioinspired dielectric elastomer actuators
coupled dielectric elastomer balloons
snap-buckling
snap-through instabilities
soft robotics for high-speed actuation
Issue Date: 2020
Publisher: John Wiley and Sons Inc.
Citation: Baumgartner, R., Kogler, A., Stadlbauer, J.M., Foo, C.C., Kaltseis, R., Baumgartner, M., Mao, G., Keplinger, C., Koh, S.J.A., Arnold, N., Suo, Z., Kaltenbrunner, M., Bauer, S. (2020). A Lesson from Plants: High-Speed Soft Robotic Actuators. Advanced Science 7 (5) : 1903391. ScholarBank@NUS Repository. https://doi.org/10.1002/advs.201903391
Rights: Attribution 4.0 International
Abstract: Rapid energy-efficient movements are one of nature's greatest developments. Mechanisms like snap-buckling allow plants like the Venus flytrap to close the terminal lobes of their leaves at barely perceptible speed. Here, a soft balloon actuator is presented, which is inspired by such mechanical instabilities and creates safe, giant, and fast deformations. The basic design comprises two inflated elastomer membranes pneumatically coupled by a pressurized chamber of suitable volume. The high-speed actuation of a rubber balloon in a state close to the verge of mechanical instability is remotely triggered by a voltage-controlled dielectric elastomer membrane. This method spatially separates electrically active and passive parts, and thereby averts electrical breakdown resulting from the drastic thinning of an electroactive membrane during large expansion. Bistable operation with small and large volumes of the rubber balloon is demonstrated, achieving large volume changes of 1398% and a high-speed area change rate of 2600 cm2 s?1. The presented combination of fast response time with large deformation and safe handling are central aspects for a new generation of soft bio-inspired robots and can help pave the way for applications ranging from haptic displays to soft grippers and high-speed sorting machines. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Source Title: Advanced Science
URI: https://scholarbank.nus.edu.sg/handle/10635/198165
ISSN: 2198-3844
DOI: 10.1002/advs.201903391
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1002_advs_201903391.pdf1.28 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons