Please use this identifier to cite or link to this item: https://doi.org/10.1002/adfm.202005977
DC FieldValue
dc.titleLight–Matter Interaction in Quantum Confined 2D Polar Metals
dc.contributor.authorNisi, K
dc.contributor.authorSubramanian, S
dc.contributor.authorHe, W
dc.contributor.authorUlman, KA
dc.contributor.authorEl-Sherif, H
dc.contributor.authorSigger, F
dc.contributor.authorLassaunière, M
dc.contributor.authorWetherington, MT
dc.contributor.authorBriggs, N
dc.contributor.authorGray, J
dc.contributor.authorHolleitner, AW
dc.contributor.authorBassim, N
dc.contributor.authorQuek, SY
dc.contributor.authorRobinson, JA
dc.contributor.authorWurstbauer, U
dc.date.accessioned2021-07-21T07:38:34Z
dc.date.available2021-07-21T07:38:34Z
dc.date.issued2021-01-01
dc.identifier.citationNisi, K, Subramanian, S, He, W, Ulman, KA, El-Sherif, H, Sigger, F, Lassaunière, M, Wetherington, MT, Briggs, N, Gray, J, Holleitner, AW, Bassim, N, Quek, SY, Robinson, JA, Wurstbauer, U (2021-01-01). Light–Matter Interaction in Quantum Confined 2D Polar Metals. Advanced Functional Materials 31 (4) : 2005977-2005977. ScholarBank@NUS Repository. https://doi.org/10.1002/adfm.202005977
dc.identifier.issn1616301X
dc.identifier.issn16163028
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/194633
dc.description.abstractThis work is a systematic experimental and theoretical study of the in-plane dielectric functions of 2D gallium and indium films consisting of two or three atomic metal layers confined between silicon carbide and graphene with a corresponding bonding gradient from covalent to metallic to van der Waals type. k-space resolved free electron and bound electron contributions to the optical response are identified, with the latter pointing towards the existence of thickness dependent quantum confinement phenomena. The resonance energies in the dielectric functions and the observed epsilon near-zero behavior in the near infrared to visible spectral range, are dependent on the number of atomic metal layers and properties of the metal involved. A model-based spectroscopic ellipsometry approach is used to estimate the number of atomic metal layers, providing a convenient route over expensive invasive characterization techniques. A strong thickness and metal choice dependence of the light–matter interaction makes these half van der Waals 2D polar metals attractive for quantum engineered metal films, tunable (quantum-)plasmonics and nano-photonics.
dc.publisherWiley
dc.sourceElements
dc.subjectTwo-dimensional Metals
dc.subjectOptical Properties
dc.subjectDielectric Properties
dc.subjectEpsilon Near-zero 39 Behavior
dc.subjectHalf van der Waals structures
dc.subjectQuantum Plasmonics
dc.subjectEllipsometry
dc.subjectFirst Principles 40 Calculations
dc.subject2D Polar Metals
dc.typeArticle
dc.date.updated2021-07-20T03:07:46Z
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentDEPT OF PHYSICS
dc.description.doi10.1002/adfm.202005977
dc.description.sourcetitleAdvanced Functional Materials
dc.description.volume31
dc.description.issue4
dc.description.page2005977-2005977
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
SE_Nisi Subramanian He et al._07142020scholarbank.pdfSubmitted version2.32 MBAdobe PDF

OPEN

Pre-printView/Download

SCOPUSTM   
Citations

6
checked on Sep 29, 2022

Page view(s)

112
checked on Sep 29, 2022

Download(s)

2
checked on Sep 29, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.