Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/191400
Title: Developing Better Ceramic Membranes for Water and Wastewater Treatment: Where Microstructure Integrates with Chemistry
Authors: Qilin Gu 
Tze Chiang Albert Ng 
Yueping Bao
Swee Ching Tan 
John Wang 
Keywords: Porous ceramic membrane
Microstructural engineering
Surface chemistry
3D printing
Functionalization
Water treatment
Issue Date: 1-Mar-2021
Publisher: Elsevier
Citation: Qilin Gu, Tze Chiang Albert Ng, Yueping Bao, Swee Ching Tan, John Wang (2021-03-01). Developing Better Ceramic Membranes for Water and Wastewater Treatment: Where Microstructure Integrates with Chemistry. Chemical Engineering Journal. ScholarBank@NUS Repository.
Abstract: Ceramic membranes are being increasingly applied in water/wastewater treatment, chemical, beverage and pharmaceutical industry, due to their excellent filtration/separation performance, chemical, mechanical, thermal and long-term stability. This work presents a comprehensive review on the structure design, chemistry manipulation and functionalization of advanced ceramic membranes for their better performance in water/wastewater treatment. It begins with looking into engineering the microstructure features of advanced ceramic membranes, especially the intermediate and top active layers, aiming at reducing the mass transport resistance and the likelihood of membrane fouling. Strategies to tune both the porosity and pore configuration in the intermediate layer, minimize their thickness and even complete elimination are then analyzed. Recent advances in surface patterning of ceramic membranes enabled by additive manufacturing techniques are also highlighted. In parallel, emerging methodologies in manipulating the chemistry aspects of the top layer, in terms of surface hydrophilicity and surface charges, are examined, in order to regulate the interactions between the membrane surface and water/foulant molecules. Going beyond the conventional membranes, these functionalized ceramic membranes with the coupling of external stimulus are further involved for high efficient filtration and antifouling ability, with the focus on the structural optimization at various scales. Finally, perspectives and opportunities on the marriage between microstructure and chemistry are discussed for new generation ceramic membranes and their application in water and wastewater treatment.
Source Title: Chemical Engineering Journal
URI: https://scholarbank.nus.edu.sg/handle/10635/191400
ISSN: 13858947
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Gu_QL_CEJ_Sub_0103201.pdf1.72 MBAdobe PDF

OPEN

Post-print Available on 01-03-2023

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.