Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-021-21807-y
Title: Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3
Authors: Hariom Jani 
Jiajun Linghu
Sonu Hooda
Rajesh V. Chopdekar
Changjian Li 
Ganesh Ji Omar 
Saurav Prakash 
Yonghua Du
Ping Yang 
Agnieszka Banas 
Krzysztof Banas 
Siddhartha Ghosh 
Sunil Ojha
G. R. Umapathy
Dinakar Kanjilal
A. Ariando 
Stephen J. Pennycook 
Elke Arenholz
Paolo G. Radaelli
J. M. D. Coey 
Yuan Ping Feng 
T. Venkatesan 
Keywords: Magnetic properties and materials
Phase transitions and critical phenomena
Spintronics
Surfaces
interfaces and thin films
Issue Date: 12-Mar-2021
Publisher: Springer Nature
Citation: Hariom Jani, Jiajun Linghu, Sonu Hooda, Rajesh V. Chopdekar, Changjian Li, Ganesh Ji Omar, Saurav Prakash, Yonghua Du, Ping Yang, Agnieszka Banas, Krzysztof Banas, Siddhartha Ghosh, Sunil Ojha, G. R. Umapathy, Dinakar Kanjilal, A. Ariando, Stephen J. Pennycook, Elke Arenholz, Paolo G. Radaelli, J. M. D. Coey, Yuan Ping Feng, T. Venkatesan (2021-03-12). Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3. Nature Communications 12 : 1668. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-21807-y
Abstract: Antiferromagnetic insulators are a ubiquitous class of magnetic materials, holding the promise of low-dissipation spin-based computing devices that can display ultra-fast switching and are robust against stray fields. However, their imperviousness to magnetic fields also makes them difficult to control in a reversible and scalable manner. Here we demonstrate a novel proof-of-principle ionic approach to control the spin reorientation (Morin) transition reversibly in the common antiferromagnetic insulator α-Fe2O3 (haematite) – now an emerging spintronic material that hosts topological antiferromagnetic spin-textures and long magnon-diffusion lengths. We use a low-temperature catalytic-spillover process involving the post-growth incorporation or removal of hydrogen from α-Fe2O3 thin films. Hydrogenation drives pronounced changes in its magnetic anisotropy, Néel vector orientation and canted magnetism via electron injection and local distortions. We explain these effects with a detailed magnetic anisotropy model and first-principles calculations. Tailoring our work for future applications, we demonstrate reversible control of the room-temperature spin-state by doping/expelling hydrogen in Rh-substituted α-Fe2O3.
Source Title: Nature Communications
URI: https://scholarbank.nus.edu.sg/handle/10635/189160
ISSN: 20411723
DOI: 10.1038/s41467-021-21807-y
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Reversible hydrogen control of antiferromagnetic anisotropy in ?-Fe2O3.pdf2.28 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.