Please use this identifier to cite or link to this item:
https://doi.org/10.1038/s41467-021-21807-y
Title: | Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3 | Authors: | Hariom Jani Jiajun Linghu Sonu Hooda Rajesh V. Chopdekar Changjian Li Ganesh Ji Omar Saurav Prakash Yonghua Du Ping Yang Agnieszka Banas Krzysztof Banas Siddhartha Ghosh Sunil Ojha G. R. Umapathy Dinakar Kanjilal A. Ariando Stephen J. Pennycook Elke Arenholz Paolo G. Radaelli J. M. D. Coey Yuan Ping Feng T. Venkatesan |
Keywords: | Magnetic properties and materials Phase transitions and critical phenomena Spintronics Surfaces interfaces and thin films |
Issue Date: | 12-Mar-2021 | Publisher: | Springer Nature | Citation: | Hariom Jani, Jiajun Linghu, Sonu Hooda, Rajesh V. Chopdekar, Changjian Li, Ganesh Ji Omar, Saurav Prakash, Yonghua Du, Ping Yang, Agnieszka Banas, Krzysztof Banas, Siddhartha Ghosh, Sunil Ojha, G. R. Umapathy, Dinakar Kanjilal, A. Ariando, Stephen J. Pennycook, Elke Arenholz, Paolo G. Radaelli, J. M. D. Coey, Yuan Ping Feng, T. Venkatesan (2021-03-12). Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3. Nature Communications 12 : 1668. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-21807-y | Abstract: | Antiferromagnetic insulators are a ubiquitous class of magnetic materials, holding the promise of low-dissipation spin-based computing devices that can display ultra-fast switching and are robust against stray fields. However, their imperviousness to magnetic fields also makes them difficult to control in a reversible and scalable manner. Here we demonstrate a novel proof-of-principle ionic approach to control the spin reorientation (Morin) transition reversibly in the common antiferromagnetic insulator α-Fe2O3 (haematite) – now an emerging spintronic material that hosts topological antiferromagnetic spin-textures and long magnon-diffusion lengths. We use a low-temperature catalytic-spillover process involving the post-growth incorporation or removal of hydrogen from α-Fe2O3 thin films. Hydrogenation drives pronounced changes in its magnetic anisotropy, Néel vector orientation and canted magnetism via electron injection and local distortions. We explain these effects with a detailed magnetic anisotropy model and first-principles calculations. Tailoring our work for future applications, we demonstrate reversible control of the room-temperature spin-state by doping/expelling hydrogen in Rh-substituted α-Fe2O3. | Source Title: | Nature Communications | URI: | https://scholarbank.nus.edu.sg/handle/10635/189160 | ISSN: | 20411723 | DOI: | 10.1038/s41467-021-21807-y |
Appears in Collections: | Staff Publications Elements |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
Reversible hydrogen control of antiferromagnetic anisotropy in ?-Fe2O3.pdf | 2.28 MB | Adobe PDF | OPEN | None | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.