Please use this identifier to cite or link to this item: https://doi.org/10.1063/5.0035501
Title: Correlated cation lattice symmetry and oxygen octahedral rotation in perovskite oxide heterostructures
Authors: P. F. Chen 
D. Lan 
C. Liu
X. H. Wu
A. Khandelwal
M. S. Li 
C. J. Li 
P. Yang 
X. J. Yu
J. S. Chen 
S. J. Pennycook 
A. Ariando 
Z. Huang 
G. M. Chow 
Keywords: Heterostructures
Ferromagnetism
Perovskites
Crystal structure
X-ray diffraction
Issue Date: 8-Jan-2021
Publisher: AIP Publishing
Citation: P. F. Chen, D. Lan, C. Liu, X. H. Wu, A. Khandelwal, M. S. Li, C. J. Li, P. Yang, X. J. Yu, J. S. Chen, S. J. Pennycook, A. Ariando, Z. Huang, G. M. Chow (2021-01-08). Correlated cation lattice symmetry and oxygen octahedral rotation in perovskite oxide heterostructures. Journal of Applied Physics 129 (2). ScholarBank@NUS Repository. https://doi.org/10.1063/5.0035501
Abstract: Recent studies have highlighted the collective rotations of corner-shared oxygen octahedra in ABO3 functional perovskite oxides. However, experimental methods that allow direct measurements of oxygen octahedra, especially for the multilayer containing different types of oxygen octahedral rotations in each layer, are still rare. In this report, the correlation between oxygen octahedral rotation and cation-lattice symmetry is discussed by studying the interface-engineered perovskite La2/3Sr1/3MnO3 layers. The out-of-phase octahedral rotations remove the orthogonality between corresponding axes of the cation lattice, leading to the asymmetric diffraction pattern recorded by the reciprocal space mapping. More importantly, in the La2/3Sr1/3MnO3-multilayer heterostructure, the reciprocal space mapping can identify different octahedral rotations for each La2/3Sr1/3MnO3 layer, explaining the appearance of multiple Curie temperatures and coercive fields. Our results reveal the new understanding of the old reciprocal space mapping-based technique, based on the correlation between oxygen octahedral rotation and cation-lattice symmetry. The application of reciprocal space mapping to the La2/3Sr1/3MnO3-multilayers not only showcases the advantage of this technique but also extends our understanding of oxygen octahedral rotation to the more complicated oxide heterostructures.
Source Title: Journal of Applied Physics
URI: https://scholarbank.nus.edu.sg/handle/10635/188101
ISSN: 10897550
DOI: 10.1063/5.0035501
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Correlated cation lattice symmetry and oxygen octahedral rotation in perovskite oxide heterostructures.pdf2.91 MBAdobe PDF

OPEN

Published Available on 08-01-2022

Page view(s)

52
checked on Jul 29, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.