Please use this identifier to cite or link to this item: https://doi.org/10.1021/acs.nanolett.5b00160
Title: Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures
Authors: Bradley, A.J
Ugeda, M.M
Da Jornada, F.H
Qiu, D.Y
Ruan, W
Zhang, Y
Wickenburg, S
Riss, A
Lu, J 
Mo, S.-K
Hussain, Z
Shen, Z.-X
Louie, S.G
Crommie, M.F
Keywords: Coulomb interactions
Electron-electron interactions
Electronic properties
Electronic structure
Energy gap
Materials properties
Scanning tunneling microscopy
Screening
Transition metals
Van der Waals forces
Wave functions
Electronic wave functions
Interlayer coupling
Quasi particles
Scanning tunneling microscopy/spectroscopy
STM/STS
Theoretical study
Transition metal dichalcogenides
Two Dimensional (2 D)
Graphene
chalcogen
metal nanoparticle
molybdenum
selenium
chemistry
electron transport
genetic procedures
materials testing
procedures
static electricity
ultrastructure
Chalcogens
Electron Transport
Materials Testing
Metal Nanoparticles
Molecular Probe Techniques
Molybdenum
Selenium
Static Electricity
Issue Date: 2015
Publisher: American Chemical Society
Citation: Bradley, A.J, Ugeda, M.M, Da Jornada, F.H, Qiu, D.Y, Ruan, W, Zhang, Y, Wickenburg, S, Riss, A, Lu, J, Mo, S.-K, Hussain, Z, Shen, Z.-X, Louie, S.G, Crommie, M.F (2015). Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures. Nano Letters 15 (4) : 2594-2599. ScholarBank@NUS Repository. https://doi.org/10.1021/acs.nanolett.5b00160
Rights: Attribution 4.0 International
Abstract: Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a fundamental parameter for transport and optical phenomena, decreases by nearly one electronvolt when going from one layer to three due to interlayer coupling and screening effects. Our results paint a clear picture of the evolution of the electronic wave function hybridization in the valleys of both the valence and conduction bands as the number of layers is changed. This demonstrates the importance of layer number and electron-electron interactions on van der Waals heterostructures and helps to clarify how their electronic properties might be tuned in future 2D nanodevices. (Graph Presented). © 2015 American Chemical Society.
Source Title: Nano Letters
URI: https://scholarbank.nus.edu.sg/handle/10635/183884
ISSN: 1530-6984
DOI: 10.1021/acs.nanolett.5b00160
Rights: Attribution 4.0 International
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1021_acs_nanolett_5b00160.pdf3.53 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons