Please use this identifier to cite or link to this item:
https://doi.org/10.1002/advs.201500257
DC Field | Value | |
---|---|---|
dc.title | Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose | |
dc.contributor.author | Zhang, G | |
dc.contributor.author | Liao, Q | |
dc.contributor.author | Zhang, Z | |
dc.contributor.author | Liang, Q | |
dc.contributor.author | Zhao, Y | |
dc.contributor.author | Zheng, X | |
dc.contributor.author | Zhang, Y | |
dc.date.accessioned | 2020-11-19T09:42:39Z | |
dc.date.available | 2020-11-19T09:42:39Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Zhang, G, Liao, Q, Zhang, Z, Liang, Q, Zhao, Y, Zheng, X, Zhang, Y (2015). Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Advanced Science 3 (2) : 1500257. ScholarBank@NUS Repository. https://doi.org/10.1002/advs.201500257 | |
dc.identifier.issn | 21983844 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/183744 | |
dc.description.abstract | A piezoelectric paper based on BaTiO3 (BTO) nanoparticles and bacterial cellulose (BC) with excellent output properties for application of nanogenerators (NGs) is reported. A facile and scalable vacuum filtration method is used to fabricate the piezoelectric paper. The BTO/BC piezoelectric paper based NG shows outstanding output performance with open-circuit voltage of 14 V and short-circuit current density of 190 nA cm−2. The maximum power density generated by this unique BTO/BC structure is more than ten times higher than BTO/polydimethylsiloxane structure. In bending conditions, the NG device can generate output voltage of 1.5 V, which is capable of driving a liquid crystal display screen. The improved performance can be ascribed to homogeneous distribution of piezoelectric BTO nanoparticles in the BC matrix as well as the enhanced stress on piezoelectric nanoparticles implemented by the unique percolated networks of BC nanofibers. The flexible BTO/BC piezoelectric paper based NG is lightweight, eco-friendly, and costeffective, which holds great promises for achieving wearable or implantable energy harvesters and self-powered electronics. © 2015 The Authors. | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.source | Unpaywall 20201031 | |
dc.type | Article | |
dc.contributor.department | PHYSICS | |
dc.description.doi | 10.1002/advs.201500257 | |
dc.description.sourcetitle | Advanced Science | |
dc.description.volume | 3 | |
dc.description.issue | 2 | |
dc.description.page | 1500257 | |
dc.published.state | Published | |
Appears in Collections: | Elements Staff Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1002_advs_201500257.pdf | 2.04 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License