Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.seppur.2019.116177
Title: Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling
Authors: Gu Q. 
Ng T.C.A. 
Zhang L. 
Lyu Z. 
Zhang Z. 
Ng H.Y. 
Wang J. 
Keywords: Alumina microfiltration membranes
Anti-fouling
Interfacial diffusion assisted chemical deposition (ID-CD)
Permeability
Surface modification
Issue Date: 8-Oct-2019
Publisher: Elsevier B.V.
Citation: Gu Q., Ng T.C.A., Zhang L., Lyu Z., Zhang Z., Ng H.Y., Wang J. (2019-10-08). Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling. Separation and Purification Technology 235 : 116177. ScholarBank@NUS Repository. https://doi.org/10.1016/j.seppur.2019.116177
Abstract: Surface modification has been widely adopted to regulate the surface properties of ceramic membranes in order to improve their permeability and fouling resistance in water and wastewater treatment. In this work, an interfacial diffusion assisted chemical deposition (ID-CD) strategy was formulated to realize the confined surface modification of ceramic membranes. The process involves the hydrolysis of TEOS precursor and the subsequent deposition of SiO2 nanolayers on the surface of pre-saturated ceramic membranes, followed by a calcination at low temperature. The confined surface modification has successfully demonstrated by the combined analysis of microstructure, chemical composition and mass loading. Through a deliberate control of the deposition process, an ultrathin SiO2 layer was purposely coated on the alumina grains at the membrane surface, rather than the whole membrane body. Compared with the conventional chemical deposition (CCD), where the dry ceramic membranes were straightforwardly immersed into the precursor-containing solution, the ID-CD process was able to reduce the mass loading of SiO2 to about 1/4, and notably increase the permeability of modified ceramic membranes. Significantly, the modified alumina membranes showed an improved flux recovery ratio (FRR) of 93.7% after static adsorption fouling in HA solution, due to the improved hydrophilicity (WCA = 9.7–10.2°) and negative charged membrane surface. Under the cross-flow filtration with a HA solution (50 mg/L), the surface modified alumina membranes showed improved antifouling properties with the successful conversion of irreversible fouling dominated (51.61%) in pristine membranes to reversible fouling dominated (59.51%), without changing the fouling mechanism of intermediate pore blocking model. Therefore, we believe that the ID-CD strategy could be extensively adopted for confined surface modification, in order to develop antifouling and high-permeable ceramic membranes. © 2019 Elsevier B.V.
Source Title: Separation and Purification Technology
URI: https://scholarbank.nus.edu.sg/handle/10635/183627
ISSN: 13835866
DOI: 10.1016/j.seppur.2019.116177
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Gu_Qilin_Interfacial Diffusion Assisted Chemical Deposition (ID-CD) for Confined Surface.pdf2.23 MBAdobe PDF

OPEN

Pre-printView/Download

SCOPUSTM   
Citations

12
checked on Jul 25, 2021

Page view(s)

72
checked on Jul 22, 2021

Download(s)

1
checked on Jul 22, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.