Please use this identifier to cite or link to this item: https://doi.org/10.1186/1556-276X-8-415
DC FieldValue
dc.titleZnO nanoneedle/H2O solid-liquid heterojunctionbased self-powered ultraviolet detector
dc.contributor.authorLi, Q
dc.contributor.authorWei, L
dc.contributor.authorXie, Y
dc.contributor.authorZhang, K
dc.contributor.authorLiu, L
dc.contributor.authorZhu, D
dc.contributor.authorJiao, J
dc.contributor.authorChen, Y
dc.contributor.authorYan, S
dc.contributor.authorLiu, G
dc.contributor.authorMei, L
dc.date.accessioned2020-11-10T00:33:02Z
dc.date.available2020-11-10T00:33:02Z
dc.date.issued2013
dc.identifier.citationLi, Q, Wei, L, Xie, Y, Zhang, K, Liu, L, Zhu, D, Jiao, J, Chen, Y, Yan, S, Liu, G, Mei, L (2013). ZnO nanoneedle/H2O solid-liquid heterojunctionbased self-powered ultraviolet detector. Nanoscale Research Letters 8 (1) : 1-7. ScholarBank@NUS Repository. https://doi.org/10.1186/1556-276X-8-415
dc.identifier.issn19317573
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/183213
dc.description.abstractZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. The self-powered behavior can be well explained by the formation of a space charge layer near the interface of the solid-liquid heterojunction, which results in a built-in potential and makes the solid-liquid heterojunction work in photovoltaic mode.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectElectrolytes
dc.subjectElectron transport properties
dc.subjectHeterojunctions
dc.subjectII-VI semiconductors
dc.subjectLiquids
dc.subjectNanocomposites
dc.subjectNanoneedles
dc.subjectPhotodetectors
dc.subjectPhotoelectrochemical cells
dc.subjectPhotons
dc.subjectPhotovoltaic effects
dc.subjectTemperature
dc.subjectTin oxides
dc.subjectZinc oxide
dc.subjectFluorine doped tin oxide
dc.subjectHydrothermal methods
dc.subjectShort-circuit photocurrent
dc.subjectSolid-liquid
dc.subjectSpace charge layers
dc.subjectSpectral selectivity
dc.subjectUltra-violet photodetectors
dc.subjectZnO nanoneedles
dc.subjectPhase interfaces
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1186/1556-276X-8-415
dc.description.sourcetitleNanoscale Research Letters
dc.description.volume8
dc.description.issue1
dc.description.page1-7
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1186_1556-276X-8-415.pdf1.12 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons