Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms12930
DC FieldValue
dc.titleContextuality without nonlocality in a superconducting quantum system
dc.contributor.authorJerger, M
dc.contributor.authorReshitnyk, Y
dc.contributor.authorOppliger, M
dc.contributor.authorPoto?nik, A
dc.contributor.authorMondal, M
dc.contributor.authorWallraff, A
dc.contributor.authorGoodenough, K
dc.contributor.authorWehner, S
dc.contributor.authorJuliusson, K
dc.contributor.authorLangford, N.K
dc.contributor.authorFedorov, A
dc.date.accessioned2020-10-31T11:25:26Z
dc.date.available2020-10-31T11:25:26Z
dc.date.issued2016
dc.identifier.citationJerger, M, Reshitnyk, Y, Oppliger, M, Poto?nik, A, Mondal, M, Wallraff, A, Goodenough, K, Wehner, S, Juliusson, K, Langford, N.K, Fedorov, A (2016). Contextuality without nonlocality in a superconducting quantum system. Nature Communications 7 : 12930. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms12930
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/182420
dc.description.abstractClassical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing. © The Author(s) 2016.
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectdetection method
dc.subjectnumerical model
dc.subjectperformance assessment
dc.subjectquantum mechanics
dc.subjectsuperconductivity
dc.subjecttheoretical study
dc.subjectexperimental model
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1038/ncomms12930
dc.description.sourcetitleNature Communications
dc.description.volume7
dc.description.page12930
dc.published.statepublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms12930.pdf485.18 kBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

19
checked on Oct 20, 2021

Page view(s)

75
checked on Oct 21, 2021

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons