Please use this identifier to cite or link to this item: https://doi.org/10.1186/s12859-015-0522-3
DC FieldValue
dc.titleEGFR Mutant Structural Database: Computationally predicted 3D structures and the corresponding binding free energies with gefitinib and erlotinib
dc.contributor.authorMa, L
dc.contributor.authorWang, D.D
dc.contributor.authorHuang, Y
dc.contributor.authorYan, H
dc.contributor.authorWong, M.P
dc.contributor.authorLee, V.H.F
dc.date.accessioned2020-10-27T10:50:35Z
dc.date.available2020-10-27T10:50:35Z
dc.date.issued2015
dc.identifier.citationMa, L, Wang, D.D, Huang, Y, Yan, H, Wong, M.P, Lee, V.H.F (2015). EGFR Mutant Structural Database: Computationally predicted 3D structures and the corresponding binding free energies with gefitinib and erlotinib. BMC Bioinformatics 16 (1) : 85. ScholarBank@NUS Repository. https://doi.org/10.1186/s12859-015-0522-3
dc.identifier.issn14712105
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/181411
dc.description.abstractBackground: Epidermal growth factor receptor (EGFR) mutation-induced drug resistance has caused great difficulties in the treatment of non-small-cell lung cancer (NSCLC). However, structural information is available for just a few EGFR mutants. In this study, we created an EGFR Mutant Structural Database (freely available at http://bcc.ee.cityu.edu.hk/data/EGFR.html ), including the 3D EGFR mutant structures and their corresponding binding free energies with two commonly used inhibitors (gefitinib and erlotinib). Results: We collected the information of 942 NSCLC patients belonging to 112 mutation types. These mutation types are divided into five groups (insertion, deletion, duplication, modification and substitution), and substitution accounts for 61.61% of the mutation types and 54.14% of all the patients. Among all the 942 patients, 388 cases experienced a mutation at residue site 858 with leucine replaced by arginine (L858R), making it the most common mutation type. Moreover, 36 (32.14%) mutation types occur at exon 19, and 419 (44.48%) patients carried a mutation at exon 21. In this study, we predicted the EGFR mutant structures using Rosetta with the collected mutation types. In addition, Amber was employed to refine the structures followed by calculating the binding free energies of mutant-drug complexes. Conclusions: The EGFR Mutant Structural Database provides resources of 3D structures and the binding affinity with inhibitors, which can be used by other researchers to study NSCLC further and by medical doctors as reference for NSCLC treatment. © 2015 Ma et al.; licensee BioMed Central.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectAmino acids
dc.subjectBiological organs
dc.subjectDatabase systems
dc.subjectDiseases
dc.subjectDrug therapy
dc.subjectFree energy
dc.subjectBinding free energy
dc.subjectEpidermal growth factor receptors
dc.subjectErlotinib
dc.subjectGefitinib
dc.subjectNon small cell lung cancer
dc.subjectTyrosine kinase inhibitor
dc.subjectBinding energy
dc.subjectantineoplastic agent
dc.subjectepidermal growth factor receptor
dc.subjecterlotinib
dc.subjectgefitinib
dc.subjectprotein binding
dc.subjectprotein kinase inhibitor
dc.subjectquinazoline derivative
dc.subjectchemistry
dc.subjectexon
dc.subjectgenetics
dc.subjecthuman
dc.subjectlung tumor
dc.subjectmetabolism
dc.subjectmolecular dynamics
dc.subjectmutation
dc.subjectnon small cell lung cancer
dc.subjectprotein conformation
dc.subjectprotein database
dc.subjectAntineoplastic Agents
dc.subjectCarcinoma, Non-Small-Cell Lung
dc.subjectDatabases, Protein
dc.subjectErlotinib Hydrochloride
dc.subjectExons
dc.subjectHumans
dc.subjectLung Neoplasms
dc.subjectMolecular Dynamics Simulation
dc.subjectMutation
dc.subjectProtein Binding
dc.subjectProtein Conformation
dc.subjectProtein Kinase Inhibitors
dc.subjectQuinazolines
dc.subjectReceptor, Epidermal Growth Factor
dc.typeArticle
dc.contributor.departmentSAW SWEE HOCK SCHOOL OF PUBLIC HEALTH
dc.description.doi10.1186/s12859-015-0522-3
dc.description.sourcetitleBMC Bioinformatics
dc.description.volume16
dc.description.issue1
dc.description.page85
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1186_s12859-015-0522-3.pdf1.85 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons