Please use this identifier to cite or link to this item: https://doi.org/10.3389/fncir.2015.00087
DC FieldValue
dc.titleCentral thalamic deep-brain stimulation alters striatal-thalamic connectivity in cognitive neural behavior
dc.contributor.authorLin, H.-C
dc.contributor.authorPan, H.-C
dc.contributor.authorLin, S.-H
dc.contributor.authorLo, Y.-C
dc.contributor.authorShen, E.T.-H
dc.contributor.authorLiao, L.-D
dc.contributor.authorLiao, P.-H
dc.contributor.authorChien, Y.-W
dc.contributor.authorLiao, K.-D
dc.contributor.authorJaw, F.-S
dc.contributor.authorChu, K.-W
dc.contributor.authorLai, H.-Y
dc.contributor.authorChen, Y.-Y
dc.date.accessioned2020-10-27T10:48:28Z
dc.date.available2020-10-27T10:48:28Z
dc.date.issued2016
dc.identifier.citationLin, H.-C, Pan, H.-C, Lin, S.-H, Lo, Y.-C, Shen, E.T.-H, Liao, L.-D, Liao, P.-H, Chien, Y.-W, Liao, K.-D, Jaw, F.-S, Chu, K.-W, Lai, H.-Y, Chen, Y.-Y (2016). Central thalamic deep-brain stimulation alters striatal-thalamic connectivity in cognitive neural behavior. Frontiers in Neural Circuits 9 (42370) : 87. ScholarBank@NUS Repository. https://doi.org/10.3389/fncir.2015.00087
dc.identifier.issn16625110
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/181399
dc.description.abstractCentral thalamic deep brain stimulation (CT-DBS) has been proposed as an experimental therapeutic approach to produce consistent sustained regulation of forebrain arousal for several neurological diseases. We investigated local field potentials (LFPs) induced by CT-DBS from the thalamic central lateral nuclei (CL) and the striatum as potential biomarkers for the enhancement of lever-pressing skill learning. LFPs were simultaneously recorded from multiple sites in the CL, ventral striatum (Vstr), and dorsal striatum (Dstr). LFP oscillation power and functional connectivity were assessed and compared between the CT-DBS and sham control groups. The theta and alpha LFP oscillations were significantly increased in the CL and striatum in the CT-DBS group. Furthermore, interhemispheric coherences between bilateral CL and striatum were increased in the theta band. Additionally, enhancement of c-Fos activity, dopamine D2 receptor (Drd2), and ?4-nicotinic acetylcholine receptor (?4-nAChR) occurred after CT-DBS treatment in the striatum and hippocampus. CT-DBS strengthened thalamic-striatal functional connectivity, which demonstrates that the inter-regional connectivity enhancement might contribute to synaptic plasticity in the striatum. Altered dopaminergic and cholinergic receptors resulted in modulation of striatal synaptic plasticity's ability to regulate downstream signaling cascades for higher brain functions of lever-pressing skill learning. © 2016 Lin, Pan, Lin, Lo, Shen, Liao, Liao, Chien, Liao, Jaw, Chu, Lai and Chen.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectcholinergic receptor
dc.subjectdopamine 2 receptor
dc.subjectdopamine receptor
dc.subjectnicotinic receptor alpha4
dc.subjectprotein c fos
dc.subjectdopamine 2 receptor
dc.subjectDRD2 protein, rat
dc.subjectnicotinic acetylcholine receptor alpha4 subunit
dc.subjectnicotinic receptor
dc.subjectprotein c fos
dc.subjectadult
dc.subjectalpha rhythm
dc.subjectanimal experiment
dc.subjectanimal tissue
dc.subjectArticle
dc.subjectbeta rhythm
dc.subjectbrain depth stimulation
dc.subjectbrain function
dc.subjectcentral thalamic deep brain stimulation
dc.subjectcholinergic system
dc.subjectcognition
dc.subjectconnectome
dc.subjectcontrolled study
dc.subjectcorpus striatum
dc.subjectdelta rhythm
dc.subjectdopaminergic system
dc.subjectmale
dc.subjectnerve cell plasticity
dc.subjectneuromodulation
dc.subjectnonhuman
dc.subjectoscillation
dc.subjectprotein expression
dc.subjectrat
dc.subjectthalamus
dc.subjectthalamus lateral nucleus
dc.subjecttheta rhythm
dc.subjectanimal
dc.subjectbrain depth stimulation
dc.subjectcognition
dc.subjectcorpus striatum
dc.subjecthemispheric dominance
dc.subjecthippocampus
dc.subjectlearning
dc.subjectmetabolism
dc.subjectnerve tract
dc.subjectneuropsychological test
dc.subjectphysiology
dc.subjectprocedures
dc.subjectreward
dc.subjectSprague Dawley rat
dc.subjectthalamus
dc.subjectAlpha Rhythm
dc.subjectAnimals
dc.subjectCognition
dc.subjectCorpus Striatum
dc.subjectDeep Brain Stimulation
dc.subjectFunctional Laterality
dc.subjectHippocampus
dc.subjectLearning
dc.subjectMale
dc.subjectNeural Pathways
dc.subjectNeuropsychological Tests
dc.subjectProto-Oncogene Proteins c-fos
dc.subjectRats, Sprague-Dawley
dc.subjectReceptors, Dopamine D2
dc.subjectReceptors, Nicotinic
dc.subjectReward
dc.subjectThalamus
dc.subjectTheta Rhythm
dc.typeArticle
dc.contributor.departmentLIFE SCIENCES INSTITUTE
dc.description.doi10.3389/fncir.2015.00087
dc.description.sourcetitleFrontiers in Neural Circuits
dc.description.volume9
dc.description.issue42370
dc.description.page87
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3389_fncir_2015_00087.pdf3.77 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons