Please use this identifier to cite or link to this item: https://doi.org/10.18632/oncotarget.2730
DC FieldValue
dc.titleOverexpression of N-terminal kinase like gene promotes tumorigenicity of hepatocellular carcinoma by regulating cell cycle progression and cell motility
dc.contributor.authorWang, J
dc.contributor.authorLiu, M
dc.contributor.authorChen, L
dc.contributor.authorChan, T.H.M
dc.contributor.authorJiang, L
dc.contributor.authorYuan, Y.-F
dc.contributor.authorGuan, X.-Y
dc.date.accessioned2020-10-27T05:53:24Z
dc.date.available2020-10-27T05:53:24Z
dc.date.issued2015
dc.identifier.citationWang, J, Liu, M, Chen, L, Chan, T.H.M, Jiang, L, Yuan, Y.-F, Guan, X.-Y (2015). Overexpression of N-terminal kinase like gene promotes tumorigenicity of hepatocellular carcinoma by regulating cell cycle progression and cell motility. Oncotarget 6 (3) : 1618-1630. ScholarBank@NUS Repository. https://doi.org/10.18632/oncotarget.2730
dc.identifier.issn19492553
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180963
dc.description.abstractAmplification and overexpression of CHD1L is one of the most frequent genetic alterations in hepatocellular carcinoma (HCC). Here we found that one of CHD1L downstream targets, NTKL, was frequently upregulated in HCC, which was significantly correlated with vascular invasion (P = 0.012) and poor prognosis (P = 0.050) of HCC. ChIP assay demonstrated the binding of CHD1L to the promoter region of NTKL. QRT-PCR study showed that the expression of NTKL positively correlated with CHD1L expression in both clinical samples and cell lines. Functional study found that NTKL had strong oncogenic roles, including increased cell growth, colony formation in soft agar, and tumor formation in nude mice. Further study found that NTKL could promote G1/S transition by decreasing P53 and increasing CyclinD1 expressions. NTKL overexpression could accelerate the mitotic exit and chromosome segregation, which led to the cytokinesis failure and subsequently induced apoptosis. NTKL also regulated cell motility by facilitating philopodia and lamellipodia formation through regulating F-actin reorganization and the phosphorylation of small GTPase Rac1/ cdc42. Using co-IP and mass spectrometry approach, we identified the large GTPase dynamin2 as an interacting protein of NTKL, which might be responsible for the phenotype alterations caused by NTKL overexpression, such as cytokinesis failure, increased cell motility and abnormal of cell division.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectagar
dc.subjectcyclin D1
dc.subjectdynamin II
dc.subjectF actin
dc.subjectguanosine triphosphatase
dc.subjectn terminal kinase like protein
dc.subjectprotein
dc.subjectprotein Cdc42
dc.subjectprotein p53
dc.subjectRac1 protein
dc.subjectunclassified drug
dc.subjectCHD1L protein, human
dc.subjectDNA binding protein
dc.subjectDNA helicase
dc.subjectDNM2 protein, human
dc.subjectdynamin
dc.subjectSCYL1 protein, human
dc.subjecttranscription factor
dc.subjectadult
dc.subjectamino terminal kinase like gene
dc.subjectanimal cell
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectanimal tissue
dc.subjectapoptosis
dc.subjectArticle
dc.subjectcancer prognosis
dc.subjectcarcinogenesis
dc.subjectcarcinogenicity
dc.subjectcell cycle progression
dc.subjectcell division
dc.subjectcell growth
dc.subjectcell motility
dc.subjectCHD1L oncogene
dc.subjectchromatin immunoprecipitation
dc.subjectchromosome segregation
dc.subjectcolony formation
dc.subjectcontrolled study
dc.subjectcorrelation analysis
dc.subjectcytokinesis
dc.subjectenzyme phosphorylation
dc.subjectfemale
dc.subjectG1 phase cell cycle checkpoint
dc.subjectgene
dc.subjectgene expression
dc.subjectgene overexpression
dc.subjecthuman
dc.subjecthuman tissue
dc.subjectlamellipodium
dc.subjectliver cell carcinoma
dc.subjectmajor clinical study
dc.subjectmale
dc.subjectmass spectrometry
dc.subjectmitosis
dc.subjectmouse
dc.subjectmutation
dc.subjectnonhuman
dc.subjectnude mouse
dc.subjectoncogene
dc.subjectphenotype
dc.subjectpromoter region
dc.subjectreal time polymerase chain reaction
dc.subjectanimal
dc.subjectbiosynthesis
dc.subjectcell cycle
dc.subjectcell motion
dc.subjectcell proliferation
dc.subjectenzymology
dc.subjectgenetics
dc.subjectliver cell carcinoma
dc.subjectliver tumor
dc.subjectmetabolism
dc.subjectmiddle aged
dc.subjectpathology
dc.subjectphysiology
dc.subjecttumor cell line
dc.subjectxenograft
dc.subjectAnimals
dc.subjectApoptosis
dc.subjectCarcinoma, Hepatocellular
dc.subjectCell Cycle
dc.subjectCell Line, Tumor
dc.subjectCell Movement
dc.subjectCell Proliferation
dc.subjectDNA Helicases
dc.subjectDNA-Binding Proteins
dc.subjectDynamins
dc.subjectFemale
dc.subjectGene Expression
dc.subjectHeterografts
dc.subjectHumans
dc.subjectLiver Neoplasms
dc.subjectMale
dc.subjectMice
dc.subjectMiddle Aged
dc.subjectTranscription Factors
dc.typeArticle
dc.contributor.departmentDEPT OF ANATOMY
dc.contributor.departmentCANCER SCIENCE INSTITUTE OF SINGAPORE
dc.description.doi10.18632/oncotarget.2730
dc.description.sourcetitleOncotarget
dc.description.volume6
dc.description.issue3
dc.description.page1618-1630
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_18632_oncotarget_2730.pdf7.34 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons