Please use this identifier to cite or link to this item: https://doi.org/10.1038/srep15420
DC FieldValue
dc.titleExcitation, detection, and electrostatic manipulation of terahertz-frequency range plasmons in a two-dimensional electron system
dc.contributor.authorWu, J
dc.contributor.authorMayorov, A.S
dc.contributor.authorWood, C.D
dc.contributor.authorMistry, D
dc.contributor.authorLi, L
dc.contributor.authorMuchenje, W
dc.contributor.authorRosamond, M.C
dc.contributor.authorChen, L
dc.contributor.authorLinfield, E.H
dc.contributor.authorDavies, A.G
dc.contributor.authorCunningham, J.E
dc.date.accessioned2020-10-26T08:55:25Z
dc.date.available2020-10-26T08:55:25Z
dc.date.issued2015
dc.identifier.citationWu, J, Mayorov, A.S, Wood, C.D, Mistry, D, Li, L, Muchenje, W, Rosamond, M.C, Chen, L, Linfield, E.H, Davies, A.G, Cunningham, J.E (2015). Excitation, detection, and electrostatic manipulation of terahertz-frequency range plasmons in a two-dimensional electron system. Scientific Reports 5 : 15420. ScholarBank@NUS Repository. https://doi.org/10.1038/srep15420
dc.identifier.issn2045-2322
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180424
dc.description.abstractTerahertz frequency time-domain spectroscopy employing free-space radiation has frequently been used to probe the elementary excitations of low-dimensional systems. The diffraction limit, however, prevents its use for the in-plane study of individual laterally-defined nanostructures. Here, we demonstrate a planar terahertz frequency plasmonic circuit in which photoconductive material is monolithically integrated with a two-dimensional electron system. Plasmons with a broad spectral range (up to ~ 400 GHz) are excited by injecting picosecond-duration pulses, generated and detected by a photoconductive semiconductor, into a high mobility two-dimensional electron system. Using voltage modulation of a Schottky gate overlying the two-dimensional electron system, we form a tuneable plasmonic cavity, and observe electrostatic manipulation of the plasmon resonances. Our technique offers a direct route to access the picosecond dynamics of confined electron transport in a broad range of lateral nanostructures.
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.typeArticle
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.description.doi10.1038/srep15420
dc.description.sourcetitleScientific Reports
dc.description.volume5
dc.description.page15420
dc.published.statepublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_srep15420.pdf1.84 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

21
checked on Dec 5, 2021

Page view(s)

85
checked on Dec 2, 2021

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons