Please use this identifier to cite or link to this item: https://doi.org/10.1038/onc.2016.374
DC FieldValue
dc.titleThe hot-spot p53R172H mutant promotes formation of giant spermatogonia triggered by DNA damage
dc.contributor.authorXue, Y
dc.contributor.authorRaharja, A
dc.contributor.authorSim, W
dc.contributor.authorWong, E.S.M
dc.contributor.authorRahmat, S.A.B
dc.contributor.authorLane, D.P
dc.date.accessioned2020-10-23T02:30:37Z
dc.date.available2020-10-23T02:30:37Z
dc.date.issued2017
dc.identifier.citationXue, Y, Raharja, A, Sim, W, Wong, E.S.M, Rahmat, S.A.B, Lane, D.P (2017). The hot-spot p53R172H mutant promotes formation of giant spermatogonia triggered by DNA damage. Oncogene 36 (14) : 2002-2013. ScholarBank@NUS Repository. https://doi.org/10.1038/onc.2016.374
dc.identifier.issn09509232
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/179209
dc.description.abstractOverexpression of mutant p53 is a common finding in most cancers but testicular tumours accumulate wild-type p53 (wtp53). In contrast to the accepted concept that p53 homozygous mutant mice do not accumulate mutant p53 in normal cells, our study on a mutant p53 mouse model of Li-Fraumeni syndrome harbouring the hot-spot p53R172H mutation described an elevated level of mutant p53 in non-cancerous mouse tissues. Here we use detailed immunohistochemical analysis to document the expression of p53R172H in mouse testis. In developing and adult testes, p53R172H was expressed in gonocytes, type A, Int, B spermatogonia as well as in pre-Sertoli cells and Leydig cells but was undetectable in spermatocytes and spermatids. A similar staining pattern was demonstrated for wtp53. However, the intensity of wtp53 staining was generally weaker than that of p53R172H, which indicates that the expression of p53R172H can be a surrogate marker of p53 gene transcription. Comparing the responses of wtp53 and p53R172H to irradiation, we found persistent DNA double-strand breaks in p53R172H testes and the formation of giant spermatogonia (GSG) following persistent DNA damage in p53R172H and p53-null mice. Strikingly, we found that p53R172H promotes spontaneous formation of GSG in non-stressed p53R172H ageing mice. Two types of GSG: Viable and Degenerative GSG were defined. We elucidate the factors involved in the formation of GSG: the loss of p53 function is a requirement for the formation of GSG whereas DNA damage acts as a promoting trigger. The formation of GSG does not translate to higher efficacy of testicular tumorigenesis arising from mutant p53 cells, which might be due to the presence of delayed-onset of p53-independent apoptosis. © 2017 The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectaurora B kinase
dc.subjectbeta galactosidase
dc.subjectcaspase 3
dc.subjectcyclin A2
dc.subjectcyclin D1
dc.subjectcycline
dc.subjecthistone gamma h2ax
dc.subjecthistone H2AX
dc.subjecthistone H3
dc.subjectprotein MDM2
dc.subjectprotein p21
dc.subjectprotein p53
dc.subjecttumor suppressor p53 binding protein 1
dc.subjectunclassified drug
dc.subjectarginine
dc.subjecthistidine
dc.subjectmutant protein
dc.subjectadult
dc.subjectanimal cell
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectanimal tissue
dc.subjectapoptosis
dc.subjectArticle
dc.subjectcell cycle progression
dc.subjectcell proliferation
dc.subjectcontrolled study
dc.subjectDNA damage
dc.subjectDNA damage response
dc.subjectdouble stranded DNA break
dc.subjectembryo
dc.subjectgene expression
dc.subjectgene sequence
dc.subjectgenetic transcription
dc.subjectgiant spermatogonia
dc.subjecthereditary tumor
dc.subjectimmunohistochemistry
dc.subjectin situ hybridization
dc.subjectintron
dc.subjectirradiation
dc.subjectLeydig cell
dc.subjectmale
dc.subjectmouse
dc.subjectnewborn
dc.subjectnonhuman
dc.subjectprimordial germ cell
dc.subjectpriority journal
dc.subjectpromoter region
dc.subjectprotein depletion
dc.subjectprotein function
dc.subjectseminiferous tubule epithelium
dc.subjectSertoli cell
dc.subjectspermatid
dc.subjectspermatocyte
dc.subjectspermatogenesis
dc.subjectspermatogonium
dc.subjectstaining
dc.subjectamino acid substitution
dc.subjectanimal
dc.subjectDNA damage
dc.subjectgenetics
dc.subjectmammalian embryo
dc.subjectmetabolism
dc.subjectmutation rate
dc.subjectpathology
dc.subjectphysiology
dc.subjectspermatogonium
dc.subjecttestis
dc.subjecttestis tumor
dc.subjecttransgenic mouse
dc.subjecttumor suppressor gene
dc.subjectAmino Acid Substitution
dc.subjectAnimals
dc.subjectAnimals, Newborn
dc.subjectApoptosis
dc.subjectArginine
dc.subjectDNA Damage
dc.subjectEmbryo, Mammalian
dc.subjectGenes, p53
dc.subjectHistidine
dc.subjectMale
dc.subjectMice
dc.subjectMice, Transgenic
dc.subjectMutant Proteins
dc.subjectMutation Rate
dc.subjectSpermatogonia
dc.subjectTesticular Neoplasms
dc.subjectTestis
dc.typeArticle
dc.contributor.departmentMEDICINE
dc.description.doi10.1038/onc.2016.374
dc.description.sourcetitleOncogene
dc.description.volume36
dc.description.issue14
dc.description.page2002-2013
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_onc_2016_374.pdf20.01 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons