Please use this identifier to cite or link to this item: https://doi.org/10.1038/srep39930
DC FieldValue
dc.titleModel fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species
dc.contributor.authorAdams, M.P
dc.contributor.authorCollier, C.J
dc.contributor.authorUthicke, S
dc.contributor.authorOw, Y.X
dc.contributor.authorLanglois, L
dc.contributor.authorO'Brien, K.R
dc.date.accessioned2020-10-21T08:05:15Z
dc.date.available2020-10-21T08:05:15Z
dc.date.issued2017
dc.identifier.citationAdams, M.P, Collier, C.J, Uthicke, S, Ow, Y.X, Langlois, L, O'Brien, K.R (2017). Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species. Scientific Reports 7 : 39930. ScholarBank@NUS Repository. https://doi.org/10.1038/srep39930
dc.identifier.issn20452322
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178714
dc.description.abstractWhen several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt) for maximum photosynthetic rate (P max). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike. © The Author(s) 2017.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectmodel
dc.subjectnonhuman
dc.subjectphotosynthetic rate
dc.subjectseagrass
dc.subjectspecies
dc.subjectAlismatales
dc.subjectbiological model
dc.subjectphotosynthesis
dc.subjectphysiology
dc.subjectreproducibility
dc.subjectstatistical analysis
dc.subjecttemperature
dc.subjecttropic climate
dc.subjectAlismatales
dc.subjectData Interpretation, Statistical
dc.subjectModels, Biological
dc.subjectPhotosynthesis
dc.subjectReproducibility of Results
dc.subjectTemperature
dc.subjectTropical Climate
dc.typeArticle
dc.contributor.departmentTROPICAL MARINE SCIENCE INSTITUTE
dc.description.doi10.1038/srep39930
dc.description.sourcetitleScientific Reports
dc.description.volume7
dc.description.page39930
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_srep39930.pdf1.4 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons