Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-07261-3
DC FieldValue
dc.titleLongitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy
dc.contributor.authorSharma, A
dc.contributor.authorCao, E.Y
dc.contributor.authorKumar, V
dc.contributor.authorZhang, X
dc.contributor.authorLeong, H.S
dc.contributor.authorWong, A.M.L
dc.contributor.authorRamakrishnan, N
dc.contributor.authorHakimullah, M
dc.contributor.authorTeo, H.M.V
dc.contributor.authorChong, F.T
dc.contributor.authorChia, S
dc.contributor.authorThangavelu, M.T
dc.contributor.authorKwang, X.L
dc.contributor.authorGupta, R
dc.contributor.authorClark, J.R
dc.contributor.authorPeriyasamy, G
dc.contributor.authorIyer, N.G
dc.contributor.authorDasGupta, R
dc.date.accessioned2020-10-20T09:37:47Z
dc.date.available2020-10-20T09:37:47Z
dc.date.issued2018
dc.identifier.citationSharma, A, Cao, E.Y, Kumar, V, Zhang, X, Leong, H.S, Wong, A.M.L, Ramakrishnan, N, Hakimullah, M, Teo, H.M.V, Chong, F.T, Chia, S, Thangavelu, M.T, Kwang, X.L, Gupta, R, Clark, J.R, Periyasamy, G, Iyer, N.G, DasGupta, R (2018). Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nature Communications 9 (1) : 4931. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-07261-3
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178380
dc.description.abstractChemo-resistance is one of the major causes of cancer-related deaths. Here we used single-cell transcriptomics to investigate divergent modes of chemo-resistance in tumor cells. We observed that higher degree of phenotypic intra-tumor heterogeneity (ITH) favors selection of pre-existing drug-resistant cells, whereas phenotypically homogeneous cells engage covert epigenetic mechanisms to trans-differentiate under drug-selection. This adaptation was driven by selection-induced gain of H3K27ac marks on bivalently poised resistance-associated chromatin, and therefore not expressed in the treatment-naïve setting. Mechanistic interrogation of this phenomenon revealed that drug-induced adaptation was acquired upon the loss of stem factor SOX2, and a concomitant gain of SOX9. Strikingly we observed an enrichment of SOX9 at drug-induced H3K27ac sites, suggesting that tumor evolution could be driven by stem cell-switch-mediated epigenetic plasticity. Importantly, JQ1 mediated inhibition of BRD4 could reverse drug-induced adaptation. These results provide mechanistic insights into the modes of therapy-induced cellular plasticity and underscore the use of epigenetic inhibitors in targeting tumor evolution. © 2018, The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subject4 (4 chlorophenyl) 2,3,9 trimethyl 6h thieno[3,2 f][1,2,4]triazolo[4,3 a][1,4]diazepine 6 acetic acid tert butyl ester
dc.subjectcisplatin
dc.subjectcytokeratin 18
dc.subjectcytokeratin 8
dc.subjectepithelial cell adhesion molecule
dc.subjecthistone H3
dc.subjectRNA
dc.subjecttranscription factor Sox2
dc.subjecttranscription factor Sox9
dc.subjectuvomorulin
dc.subjectvimentin
dc.subjectantineoplastic agent
dc.subjectcisplatin
dc.subjectadaptation
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectArticle
dc.subjectcancer chemotherapy
dc.subjectcancer resistance
dc.subjectcell plasticity
dc.subjectcell proliferation
dc.subjectchromatin
dc.subjectcontrolled study
dc.subjecthead and neck squamous cell carcinoma
dc.subjecthistone acetylation
dc.subjecthuman
dc.subjecthuman cell
dc.subjectmouse
dc.subjectnonhuman
dc.subjectphenotype
dc.subjectprimary cell
dc.subjectRNA sequence
dc.subjectsingle cell analysis
dc.subjectstem cell
dc.subjecttranscriptomics
dc.subjecttumor xenograft
dc.subjectanimal
dc.subjectcancer stem cell
dc.subjectdrug resistance
dc.subjectdrug screening
dc.subjectgene expression profiling
dc.subjectgene expression regulation
dc.subjectgenetic heterogeneity
dc.subjectgenetics
dc.subjectknockout mouse
dc.subjectmetabolism
dc.subjectmouth tumor
dc.subjectnonobese diabetic mouse
dc.subjectprocedures
dc.subjectSCID mouse
dc.subjectsequence analysis
dc.subjectsingle cell analysis
dc.subjectsquamous cell carcinoma
dc.subjecttumor cell line
dc.subjectAnimals
dc.subjectAntineoplastic Agents
dc.subjectCarcinoma, Squamous Cell
dc.subjectCell Line, Tumor
dc.subjectCisplatin
dc.subjectDrug Resistance, Neoplasm
dc.subjectGene Expression Profiling
dc.subjectGene Expression Regulation, Neoplastic
dc.subjectGenetic Heterogeneity
dc.subjectHumans
dc.subjectMice, Inbred NOD
dc.subjectMice, Knockout
dc.subjectMice, SCID
dc.subjectMouth Neoplasms
dc.subjectNeoplastic Stem Cells
dc.subjectSequence Analysis, RNA
dc.subjectSingle-Cell Analysis
dc.subjectXenograft Model Antitumor Assays
dc.typeArticle
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1038/s41467-018-07261-3
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page4931
dc.published.statepublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-07261-3.pdf5.64 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons