Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41598-017-03495-1
DC FieldValue
dc.titleAmplifying the signal of localized surface plasmon resonance sensing for the sensitive detection of Escherichia
dc.contributor.authorSong, L
dc.contributor.authorZhang, L
dc.contributor.authorHuang, Y
dc.contributor.authorChen, L
dc.contributor.authorZhang, G
dc.contributor.authorShen, Z
dc.contributor.authorZhang, J
dc.contributor.authorXiao, Z
dc.contributor.authorChen, T
dc.date.accessioned2020-10-20T09:11:39Z
dc.date.available2020-10-20T09:11:39Z
dc.date.issued2017
dc.identifier.citationSong, L, Zhang, L, Huang, Y, Chen, L, Zhang, G, Shen, Z, Zhang, J, Xiao, Z, Chen, T (2017). Amplifying the signal of localized surface plasmon resonance sensing for the sensitive detection of Escherichia. Scientific Reports 7 (1) : 3288. ScholarBank@NUS Repository. https://doi.org/10.1038/s41598-017-03495-1
dc.identifier.issn20452322
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178317
dc.description.abstractGold nanorods (Au NRs) based localized surface plasmon resonance (LSPR) sensors have been widely employed in various fields including biology, environment and food safety detection, but their size- A nd shape-dependent sensitivity limits their practical applications in sensing and biological detection. In our present work, we proposed an approach to maximally amplify the signal of Au NRs based LSPR sensing by coating an optimized thickness of mesoporous silica onto Au NRs. The plasmonic peaks of Au NRs@SiO2 with different shell thickness showed finely linear response to the change of surrounding refractive index. The optimized thickness of mesoporous silica of Au NRs@SiO2 not only provided high stability for LSPR sensor,but also displayed much higher sensitivity (390 nm/RIU) than values of Au NRs from previous reports. The obtained Au NRs@SiO2 based LSPR sensor was further used in practical application for selectively detection of the E. coli O157:H7, and the detection limit achieved 10 CFU, which is much lower than conventional methods such as electrochemical methods and lateral-flow immunochromatography. © 2017 The Author(s).
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectgold
dc.subjectnanotube
dc.subjectchemistry
dc.subjectEscherichia coli O157
dc.subjectisolation and purification
dc.subjectprocedures
dc.subjectsurface plasmon resonance
dc.subjectultrastructure
dc.subjectultraviolet spectrophotometry
dc.subjectEscherichia coli O157
dc.subjectGold
dc.subjectNanotubes
dc.subjectSpectrophotometry, Ultraviolet
dc.subjectSurface Plasmon Resonance
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1038/s41598-017-03495-1
dc.description.sourcetitleScientific Reports
dc.description.volume7
dc.description.issue1
dc.description.page3288
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41598-017-03495-1.pdf2.08 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons