Please use this identifier to cite or link to this item: https://doi.org/10.1021/acs.nanolett.7b00196
DC FieldValue
dc.titleTransient Clustering of Reaction Intermediates during Wet Etching of Silicon Nanostructures
dc.contributor.authorZAINUL AABDIN
dc.contributor.authorXiu Mei Xu
dc.contributor.authorSoumyo Sen
dc.contributor.authorUTKARSH ANAND
dc.contributor.authorPetr Kral
dc.contributor.authorFrank Holsteyns
dc.contributor.authorUTKUR MIRZIYODOVICH MIRSAIDOV
dc.date.accessioned2020-10-16T09:25:35Z
dc.date.available2020-10-16T09:25:35Z
dc.date.issued2017-04-18
dc.identifier.citationZAINUL AABDIN, Xiu Mei Xu, Soumyo Sen, UTKARSH ANAND, Petr Kral, Frank Holsteyns, UTKUR MIRZIYODOVICH MIRSAIDOV (2017-04-18). Transient Clustering of Reaction Intermediates during Wet Etching of Silicon Nanostructures. Nano Letters 17 : 2953−2958. ScholarBank@NUS Repository. https://doi.org/10.1021/acs.nanolett.7b00196
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/177680
dc.description.abstractWet chemical etching is a key process in fabricating silicon (Si) nanostructures. Currently, wet etching of Si is proposed to occur through the reaction of surface Si atoms with etchant molecules, forming etch intermediates that dissolve directly into the bulk etchant solution. Here, using in situ transmission electron microscopy (TEM), we follow the nanoscale wet etch dynamics of amorphous Si (a-Si) nanopillars in real-time and show that intermediates generated during alkaline wet etching first aggregate as nanoclusters on the Si surface and then detach from the surface before dissolving in the etchant solution. Molecular dynamics simulations reveal that the molecules of etch intermediates remain weakly bound to the hydroxylated Si surface during the etching and aggregate into nanoclusters via surface diffusion instead of directly diffusing into the etchant solution. We confirmed this model experimentally by suppressing the formation of nanoclusters of etch intermediates on the Si surfaces by shielding the hydroxylated Si sites with large ions. These results suggest that the interaction of etch intermediates with etching surfaces controls the solubility of reaction intermediates and is an important parameter in fabricating densely packed clean 3D nanostructures for future generation microelectronics.
dc.description.urihttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b0019
dc.language.isoen
dc.publisherNano Letters
dc.rightsCC0 1.0 Universal
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectEtching,Molecules,Silicon,Transmission electron microscopy,Nanoclusters
dc.typeArticle
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentDEPT OF BIOLOGICAL SCIENCES
dc.contributor.departmentDEPT OF PHYSICS
dc.contributor.departmentNUS NANOSCIENCE & NANOTECH INITIATIVE
dc.description.doi10.1021/acs.nanolett.7b00196
dc.description.sourcetitleNano Letters
dc.description.volume17
dc.description.page2953−2958
dc.published.statePublished
dc.grant.idNRF CRP9-2011-04
dc.grant.idNRF-CRP16-2015-05
dc.grant.idNUSYIA-FY14-P17
dc.grant.fundingagencyNational Research Foundation
dc.grant.fundingagencyNational University of Singapore
dc.relation.datasetDOI:10.1021/acs.nanolett.7b00196
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Manuscript_20170426_FINAL.pdf4.31 MBAdobe PDF

OPEN

Post-printView/Download

SCOPUSTM   
Citations

8
checked on Oct 19, 2020

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons