Please use this identifier to cite or link to this item: https://doi.org/10.1021/acs.nanolett.9b04808
DC FieldValue
dc.titlePhase Selection in Self-catalyzed GaAs Nanowires
dc.contributor.authorFederico Panciera
dc.contributor.authorZHASLAN BARAISSOV
dc.contributor.authorGilles Patriarche
dc.contributor.authorVladimir G. Dubrovskii
dc.contributor.authorFrank Glas
dc.contributor.authorLaurent Travers
dc.contributor.authorUTKUR MIRZIYODOVICH MIRSAIDOV
dc.contributor.authorJean-Christophe Harmand
dc.date.accessioned2020-10-16T08:11:31Z
dc.date.available2020-10-16T08:11:31Z
dc.date.issued2020
dc.identifier.citationFederico Panciera, ZHASLAN BARAISSOV, Gilles Patriarche, Vladimir G. Dubrovskii, Frank Glas, Laurent Travers, UTKUR MIRZIYODOVICH MIRSAIDOV, Jean-Christophe Harmand (2020). Phase Selection in Self-catalyzed GaAs Nanowires. Nano Letters 20 : 1669−1675. ScholarBank@NUS Repository. https://doi.org/10.1021/acs.nanolett.9b04808
dc.identifier.issn15306984
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/177660
dc.description.abstractCrystal phase switching between the zincblende and wurtzite structures in III–V nanowires is crucial from the fundamental viewpoint as well as for electronic and photonic applications of crystal phase heterostructures. Here, the results of in situ monitoring of self-catalyzed vapor–liquid–solid growth of GaAs nanowires by molecular beam epitaxy inside a transmission electron microscope are presented. It is demonstrated that the occurrence of the zincblende or wurtzite phase in self-catalyzed nanowires is determined by the sole parameter, the droplet contact angle, which can be finely tuned by changing the group III and V fluxes. The zincblende phase forms at small (<100°) and large (>125°) contact angles, whereas pure wurtzite phase is observed for intermediate contact angles. Wurtzite nanowires are restricted by vertical sidewalls, whereas zincblende nanowires taper or develop the truncated edge at their top. These findings are explained within a dedicated model for the surface energetics. These results give a clear route for the crystal phase control in Au-free III–V nanowires. On a more general note, in situ growth monitoring with atomic resolution and at the technological-relevant growth rates is shown to be a powerful tool for the fine-tuning of material properties at the nanoscale.
dc.publisherAmerican Chemical Society
dc.rightsCC0 1.0 Universal
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectCrystals,Contact angle,Liquids,Fluxes,Phase transitions
dc.typeArticle
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentDEPT OF BIOLOGICAL SCIENCES
dc.contributor.departmentDEPT OF PHYSICS
dc.description.doi10.1021/acs.nanolett.9b04808
dc.description.sourcetitleNano Letters
dc.description.volume20
dc.description.page1669−1675
dc.published.statePublished
dc.grant.id10-EQPX-0050
dc.grant.idNRF-CRP16−2015−05
dc.grant.id19-72-30004
dc.grant.fundingagencyFrench National Research Agency
dc.grant.fundingagencySingapore National Research Foundation
dc.grant.fundingagencyRussian Science Foundation
dc.relation.datasetDOI: 10.1021/acs.nanolett.9b04808
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Phase selection in self-catalysed.pdf1.88 MBAdobe PDF

OPEN

Post-print Available on 06-02-2021

SCOPUSTM   
Citations

12
checked on Oct 20, 2020

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons