Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.4890543
Title: Band structure mapping of bilayer graphene via quasiparticle scattering
Authors: Yankowitz, M
Wang, J.I.-J
Li, S
Birdwell, A.G
Chen, Y.-A
Watanabe, K
Taniguchi, T
Quek, S.Y 
Jarillo-Herrero, P
LeRoy, B.J
Keywords: Electric fields
Electromagnetic wave scattering
Energy gap
Scanning tunneling microscopy
Bilayer Graphene
Effective mass
Local density of state
Local probes
Quasi particles
Scanning tunneling microscopy and spectroscopy
Standing wave
Tight binding
Graphene
Issue Date: 2014
Citation: Yankowitz, M, Wang, J.I.-J, Li, S, Birdwell, A.G, Chen, Y.-A, Watanabe, K, Taniguchi, T, Quek, S.Y, Jarillo-Herrero, P, LeRoy, B.J (2014). Band structure mapping of bilayer graphene via quasiparticle scattering. APL Materials 2 (9) : 92503. ScholarBank@NUS Repository. https://doi.org/10.1063/1.4890543
Abstract: A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ0 = 3.1 eV, γ1 = 0.39 eV, and γ4 = 0.22 eV. © 2014 Author(s).
Source Title: APL Materials
URI: https://scholarbank.nus.edu.sg/handle/10635/176171
ISSN: 2166-532X
DOI: 10.1063/1.4890543
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1063_1_4890543.pdf1.13 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

19
checked on Aug 7, 2022

Page view(s)

158
checked on Aug 4, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.