Please use this identifier to cite or link to this item: https://doi.org/10.1117/1.NPh.2.2.021013
DC FieldValue
dc.titleAll-optical mapping of barrel cortex circuits based on simultaneous voltage-sensitive dye imaging and channelrhodopsin-mediated photostimulation
dc.contributor.authorLo, S.Q
dc.contributor.authorKoh, D.X.P
dc.contributor.authorSng, J.C.G
dc.contributor.authorAugustine, G.J
dc.date.accessioned2020-09-14T08:17:17Z
dc.date.available2020-09-14T08:17:17Z
dc.date.issued2015
dc.identifier.citationLo, S.Q, Koh, D.X.P, Sng, J.C.G, Augustine, G.J (2015). All-optical mapping of barrel cortex circuits based on simultaneous voltage-sensitive dye imaging and channelrhodopsin-mediated photostimulation. Neurophotonics 2 (2) : 14090SSR. ScholarBank@NUS Repository. https://doi.org/10.1117/1.NPh.2.2.021013
dc.identifier.issn2329-423X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/176148
dc.description.abstractWe describe an experimental approach that uses light to both control and detect neuronal activity in mouse barrel cortex slices: blue light patterned by a digital micromirror array system allowed us to photostimulate specific layers and columns, while a red-shifted voltage-sensitive dye was used to map out large-scale circuit activity. We demonstrate that such all-optical mapping can interrogate various circuits in somatosensory cortex by sequentially activating different layers and columns. Further, mapping in slices from whisker-deprived mice demonstrated that chronic sensory deprivation did not significantly alter feedforward inhibition driven by layer 5 pyramidal neurons. Further development of voltage-sensitive optical probes should allow this all-optical mapping approach to become an important and high-throughput tool for mapping circuit interactions in the brain. © The Authors.
dc.sourceUnpaywall 20200831
dc.subjectBrain
dc.subjectMammals
dc.subjectMapping
dc.subjectNeurons
dc.subjectTiming circuits
dc.subjectBarrel cortex
dc.subjectchannelrhodopsin
dc.subjectDigital micromirror arrays
dc.subjectExperimental approaches
dc.subjectFeedforward inhibition
dc.subjectOptogenetics
dc.subjectSomatosensory cortex
dc.subjectVoltage-sensitive dye imaging
dc.subjectBrain mapping
dc.subjectchannelrhodopsin 2
dc.subjectrhodopsin
dc.subjectunclassified drug
dc.subjectanimal experiment
dc.subjectanimal tissue
dc.subjectArticle
dc.subjectbrain region
dc.subjectcamera
dc.subjectconnectome
dc.subjectcontrolled study
dc.subjectlight emitting diode
dc.subjectmicromirror array system
dc.subjectmouse
dc.subjectnerve cell network
dc.subjectnerve stimulator
dc.subjectneurobiology
dc.subjectnonhuman
dc.subjectoptogenetics
dc.subjectphotostimulation
dc.subjectprotein expression
dc.subjectpyramidal nerve cell
dc.subjectsensory deprivation
dc.subjectsomatosensory cortex
dc.subjectsynaptic transmission
dc.subjectvibrissa
dc.subjectvoltage sensitive dye imaging
dc.typeArticle
dc.contributor.departmentDEPT OF PHARMACOLOGY
dc.contributor.departmentDEPT OF PHYSIOLOGY
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1117/1.NPh.2.2.021013
dc.description.sourcetitleNeurophotonics
dc.description.volume2
dc.description.issue2
dc.description.page14090SSR
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1117_1_NPh_2_2_021013.pdf4.73 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.