Please use this identifier to cite or link to this item: https://doi.org/10.3390/met8040276
Title: Enhancing the hardness and compressive response of magnesium using complex composition alloy reinforcement
Authors: Tun K.S.
Zhang Y.
Parande G. 
Manakari V.
Gupta M. 
Issue Date: 2018
Citation: Tun K.S., Zhang Y., Parande G., Manakari V., Gupta M. (2018). Enhancing the hardness and compressive response of magnesium using complex composition alloy reinforcement. Metals 8 (4) : 276. ScholarBank@NUS Repository. https://doi.org/10.3390/met8040276
Abstract: The present study reports the development of new magnesium composites containing complex composition alloy (CCA) particles. Materials were synthesized using a powder metallurgy route incorporating hybrid microwave sintering and hot extrusion. The presence and variation in the amount of ball-milled CCA particles (2.5 wt %, 5 wt %, and 7.5 wt %) in a magnesium matrix and their effect on the microstructure and mechanical properties of Mg-CCA composites were investigated. The use of CCA particle reinforcement effectively led to a significant matrix grain refinement. Uniformly distributed CCA particles were observed in the microstructure of the composites. The refined microstructure coupled with the intrinsically high hardness of CCA particles (406 HV) contributed to the superior mechanical properties of the Mg-CCA composites. A microhardness of 80 HV was achieved in a Mg-7.5HEA (high entropy alloy) composite, which is 1.7 times higher than that of pure Mg. A significant improvement in compressive yield strength (63%) and ultimate compressive strength (79%) in the Mg-7.5CCA composite was achieved when compared to that of pure Mg while maintaining the same ductility level. When compared to ball-milled amorphous particle-reinforced and ceramic-particle-reinforced Mg composites, higher yield and compressive strengths in Mg-CCA composites were achieved at a similar ductility level. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.
Source Title: Metals
URI: https://scholarbank.nus.edu.sg/handle/10635/175062
ISSN: 20754701
DOI: 10.3390/met8040276
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3390_met8040276.pdf5.77 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

8
checked on Oct 26, 2020

Page view(s)

17
checked on Oct 29, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.