Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms12066
DC FieldValue
dc.titleChemical control over the energy-level alignment in a two-terminal junction
dc.contributor.authorYuan L.
dc.contributor.authorFranco C.
dc.contributor.authorCrivillers N.
dc.contributor.authorMas-Torrent M.
dc.contributor.authorCao L.
dc.contributor.authorSangeeth C.S.S.
dc.contributor.authorRovira C.
dc.contributor.authorVeciana J.
dc.contributor.authorNijhuis C.A.
dc.date.accessioned2020-09-09T01:30:12Z
dc.date.available2020-09-09T01:30:12Z
dc.date.issued2016
dc.identifier.citationYuan L., Franco C., Crivillers N., Mas-Torrent M., Cao L., Sangeeth C.S.S., Rovira C., Veciana J., Nijhuis C.A. (2016). Chemical control over the energy-level alignment in a two-terminal junction. Nature Communications 7 : 12066. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms12066
dc.identifier.issn20411723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174945
dc.description.abstractThe energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectradical
dc.subjectself assembled monolayer
dc.subjectchemical process
dc.subjectchemical property
dc.subjectelectrical property
dc.subjectelectrode
dc.subjectenergy
dc.subjectmagnitude
dc.subjectmolecular analysis
dc.subjectphysics
dc.subjectradical
dc.subjectArticle
dc.subjectchemical modification
dc.subjectcontrol
dc.subjectelectric current
dc.subjectelectrode
dc.subjectenergy
dc.subjectmolecular electronics
dc.subjectroom temperature
dc.subjectsynthesis
dc.subjecttemperature dependence
dc.subjecttransistor
dc.subjectultraviolet spectroscopy
dc.subjectX ray absorption spectroscopy
dc.typeArticle
dc.contributor.departmentDEPT OF CHEMISTRY
dc.description.doi10.1038/ncomms12066
dc.description.sourcetitleNature Communications
dc.description.volume7
dc.description.page12066
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms12066.pdf899.58 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.